Author
Listed:
- Yuliang Yuan
- Jinzhu Yang
- Qi Sun
- Yan Huang
Abstract
Cinematic Rendering (CR) employs physical models such as ray tracing and global illumination to simulate real-world light phenomena, producing high-quality images with rich details. In the medical field, CR can significantly aid doctors in accurate diagnosis and preoperative planning. However, doctors require efficient real-time rendering when using CR, which presents a challenge due to the substantial computing resources demanded by CR’s ray tracing and global illumination models. Precomputed lighting can enhance the efficiency of real-time rendering by freezing certain scene variables. Typically, precomputed methods freeze geometry and materials. However, since the physical rendering of medical images relies on volume data rendering of transfer functions, the CR algorithm cannot utilize precomputed methods directly. To improve the rendering efficiency of the CR algorithm, we propose a precomputed low-frequency lighting method. By simulating the lighting pattern of shadowless surgical lamps, we adopt a spherical distribution of multiple light sources, with each source capable of illuminating the entire volume of data. Under the influence of these large-area multi-light sources, the precomputed lighting adheres to physical principles, resulting in shadow-free and uniformly distributed illumination. We integrated this precomputed method into the ray-casting algorithm, creating an accelerated CR algorithm that achieves more than twice the rendering efficiency of traditional CR rendering.
Suggested Citation
Yuliang Yuan & Jinzhu Yang & Qi Sun & Yan Huang, 2024.
"Precomputed low-frequency lighting in cinematic volume rendering,"
PLOS ONE, Public Library of Science, vol. 19(10), pages 1-18, October.
Handle:
RePEc:plo:pone00:0312339
DOI: 10.1371/journal.pone.0312339
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0312339. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.