Author
Listed:
- Polina Lakrisenko
- Dilan Pathirana
- Daniel Weindl
- Jan Hasenauer
Abstract
Estimating parameters of dynamic models from experimental data is a challenging, and often computationally-demanding task. It requires a large number of model simulations and objective function gradient computations, if gradient-based optimization is used. In many cases, steady-state computation is a part of model simulation, either due to steady-state data or an assumption that the system is at steady state at the initial time point. Various methods are available for steady-state and gradient computation. Yet, the most efficient pair of methods (one for steady states, one for gradients) for a particular model is often not clear. In order to facilitate the selection of methods, we explore six method pairs for computing the steady state and sensitivities at steady state using six real-world problems. The method pairs involve numerical integration or Newton’s method to compute the steady-state, and—for both forward and adjoint sensitivity analysis—numerical integration or a tailored method to compute the sensitivities at steady-state. Our evaluation shows that all method pairs provide accurate steady-state and gradient values, and that the two method pairs that combine numerical integration for the steady-state with a tailored method for the sensitivities at steady-state were the most robust, and amongst the most computationally-efficient. We also observed that while Newton’s method for steady-state computation yields a substantial speedup compared to numerical integration, it may lead to a large number of simulation failures. Overall, our study provides a concise overview across current methods for computing sensitivities at steady state. While our study shows that there is no universally-best method pair, it also provides guidance to modelers in choosing the right methods for a problem at hand.
Suggested Citation
Polina Lakrisenko & Dilan Pathirana & Daniel Weindl & Jan Hasenauer, 2024.
"Benchmarking methods for computing local sensitivities in ordinary differential equation models at dynamic and steady states,"
PLOS ONE, Public Library of Science, vol. 19(10), pages 1-19, October.
Handle:
RePEc:plo:pone00:0312148
DOI: 10.1371/journal.pone.0312148
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0312148. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.