Author
Listed:
- Amal Ezz-Eldien
- Mohamed Ezz
- Amjad Alsirhani
- Ayman Mohamed Mostafa
- Abdullah Alomari
- Faeiz Alserhani
- Mohammed Mujib Alshahrani
Abstract
This paper addresses the computational methods and challenges associated with prime number generation, a critical component in encryption algorithms for ensuring data security. The generation of prime numbers efficiently is a critical challenge in various domains, including cryptography, number theory, and computer science. The quest to find more effective algorithms for prime number generation is driven by the increasing demand for secure communication and data storage and the need for efficient algorithms to solve complex mathematical problems. Our goal is to address this challenge by presenting two novel algorithms for generating prime numbers: one that generates primes up to a given limit and another that generates primes within a specified range. These innovative algorithms are founded on the formulas of odd-composed numbers, allowing them to achieve remarkable performance improvements compared to existing prime number generation algorithms. Our comprehensive experimental results reveal that our proposed algorithms outperform well-established prime number generation algorithms such as Miller-Rabin, Sieve of Atkin, Sieve of Eratosthenes, and Sieve of Sundaram regarding mean execution time. More notably, our algorithms exhibit the unique ability to provide prime numbers from range to range with a commendable performance. This substantial enhancement in performance and adaptability can significantly impact the effectiveness of various applications that depend on prime numbers, from cryptographic systems to distributed computing. By providing an efficient and flexible method for generating prime numbers, our proposed algorithms can develop more secure and reliable communication systems, enable faster computations in number theory, and support advanced computer science and mathematics research.
Suggested Citation
Amal Ezz-Eldien & Mohamed Ezz & Amjad Alsirhani & Ayman Mohamed Mostafa & Abdullah Alomari & Faeiz Alserhani & Mohammed Mujib Alshahrani, 2024.
"Computational challenges and solutions: Prime number generation for enhanced data security,"
PLOS ONE, Public Library of Science, vol. 19(11), pages 1-28, November.
Handle:
RePEc:plo:pone00:0311782
DOI: 10.1371/journal.pone.0311782
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311782. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.