Author
Listed:
- Ido Neuman
- Leonid Shvartser
- Shmuel Teppler
- Yehoshua Friedman
- Jacob J Levine
- Ilya Kagan
- Jihad Bishara
- Shiri Kushinir
- Pierre Singer
Abstract
Background: Acinetobacter baumanni infection is a leading cause of morbidity and mortality in the Intensive Care Unit (ICU). Early recognition of patients at risk for infection allows early proper treatment and is associated with improved outcomes. This study aimed to construct an innovative Machine Learning (ML) based prediction tool for Acinetobacter baumanni infection, among patients in the ICU, and to examine its robustness and predictive power. Methods: For model development and internal validation, we used The Medical Information Mart for Intensive Care database (MIMIC) III data from 19,690 consecutive adult patients admitted between 2001 and 2012 at a Boston tertiary center ICU. For external validation, we used a different dataset from Rabin Medical Center (RMC, Israeli tertiary center) ICU, of 1,700 patients admitted between 2017 and 2021. After training on MIMIC cohorts, we adapted the algorithm from MIMIC to RMC and evaluated its discriminating power in terms of Area Under the Receiver Operating Curve (AUROC), sensitivity, specificity, Negative Predictive Value and Positive Predictive Value. Results: The prediction model achieved AUROC = 0.624 (95% CI 0.604–0.647). The most significant predictors were (i) physiological parameters of cardio-respiratory function, such as carbon dioxide (CO2) levels and respiratory rate, (ii) metabolic disturbances such as lactate and acidosis (pH) and (iii) past administration of antibiotics. Conclusions: Infection with Acinetobacter baumanni is more likely to occur in patients with respiratory failure and higher lactate levels, as well as patients who have used larger amounts of antibiotics. The accuracy of Acinetobacter prediction may be enhanced by future studies.
Suggested Citation
Ido Neuman & Leonid Shvartser & Shmuel Teppler & Yehoshua Friedman & Jacob J Levine & Ilya Kagan & Jihad Bishara & Shiri Kushinir & Pierre Singer, 2024.
"A machine-learning model for prediction of Acinetobacter baumannii hospital acquired infection,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-14, December.
Handle:
RePEc:plo:pone00:0311576
DOI: 10.1371/journal.pone.0311576
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311576. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.