IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0311563.html
   My bibliography  Save this article

Application of improved ant-lion algorithm for power systems

Author

Listed:
  • Wenjing Wang
  • Renjun Zhou

Abstract

An improved ant-lion algorithm is proposed to solve the load allocation problem to improve the efficiency of load allocation in the power system. The global search capability and optimization performance of the algorithm have been significantly improved by introducing elite weights and chaotic search mechanisms. The innovation of the research lies in not only optimizing economic goals, but also considering environmental goals, achieving dual optimization of economy and environment. The average running time of the proposed algorithm in Sphere function and Griebank function was 2.67s and 1.64s, respectively. The required number of iterations was significantly better than other algorithms. In the verification of solving economic load dispatch, the improved ant-lion optimizer achieved a total fuel cost reduction of 0.10% -2.39% and 6% in both 3-unit and 6-unit simulations, respectively, compared to the other three algorithms. In the verification of solving environmental and economic load dispatch, considering the valve point effect, this proposed optimization scheme had a total fuel cost of 622.46 $/hr and a total emission of 0.20 tons/h. The total objective function was 1542.54 $/hr, which was an average reduction of 53.55 $/hr compared to the other five algorithms. Therefore, improving the ant-lion optimizer can enhance its optimization performance. The improved ant-lion optimizer has positive application significance in power system load dispatch and can achieve superior load dispatch results.

Suggested Citation

  • Wenjing Wang & Renjun Zhou, 2024. "Application of improved ant-lion algorithm for power systems," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-22, December.
  • Handle: RePEc:plo:pone00:0311563
    DOI: 10.1371/journal.pone.0311563
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311563
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0311563&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0311563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sourav Basak & Biplab Bhattacharyya & Bishwajit Dey, 2022. "Combined economic emission dispatch on dynamic systems using hybrid CSA-JAYA Algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2269-2290, October.
    2. Jatin Soni & Kuntal Bhattacharjee, 2024. "Multi-objective dynamic economic emission dispatch integration with renewable energy sources and plug-in electrical vehicle using equilibrium optimizer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 8555-8586, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jatin Soni & Kuntal Bhattacharjee, 2024. "Multi-objective dynamic economic emission dispatch integration with renewable energy sources and plug-in electrical vehicle using equilibrium optimizer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 8555-8586, April.
    2. Shoyab Ali & Annapurna Bhargava & Akash Saxena & Pavan Kumar, 2023. "A Hybrid Marine Predator Sine Cosine Algorithm for Parameter Selection of Hybrid Active Power Filter," Mathematics, MDPI, vol. 11(3), pages 1-25, January.
    3. Swarupa Pinninti & Srinivasa Rao Sura, 2023. "Renewables based dynamic cost-effective optimal scheduling of distributed generators using teaching–learning-based optimization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 353-373, March.
    4. Mousumi Banerjee & Vanita Garg & Kusum Deep, 2023. "Solving structural and reliability optimization problems using efficient mutation strategies embedded in sine cosine algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 307-327, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.