Author
Listed:
- Guibin Zhao
- Fateh Bouchaala
- Mohamed S Jouini
- Umair Bin Waheed
Abstract
Estimating seismic anisotropy parameters, such as Thomson’s parameters, is crucial for investigating fractured and finely layered geological media. However, many inversion methods rely on complex physical models with initial assumptions, leading to non-reproducible estimates and subjective fracture interpretation. To address these limitations, this study utilizes machine learning methods: support vector regression, extreme gradient boost, multi-layer perceptron, and a convolutional neural network. The abundance of seismic features leads to many feature combinations, making the training and testing of machine learning models challenging. Therefore, a workflow has been developed to systematically inspect seismic features and select the most appropriate one for anisotropy estimation with reasonable accuracy. Synthetic data were generated using an earth model and well data within a finite difference numerical program. After thoroughly investigating synthetic data, the amplitudes of direct and reflected waves in the time and frequency domains were selected as input features to train machine learning methods. Optimizing the machine learning hyperparameters allowed the training and testing procedures to be completed with high accuracy. Subsequently, the optimized machine learning methods were used to predict Thomsen’s parameters, ε and δ, of a shaley formation in the zone area. To validate the predictions, the ε and δ estimated at a well location were compared with those obtained using a physics-based model, resulting in the least relative errors ranging from 2.92% to 7.14%.
Suggested Citation
Guibin Zhao & Fateh Bouchaala & Mohamed S Jouini & Umair Bin Waheed, 2025.
"Seismic anisotropy prediction using ML methods: A case study on an offshore carbonate oilfield,"
PLOS ONE, Public Library of Science, vol. 20(1), pages 1-29, January.
Handle:
RePEc:plo:pone00:0311561
DOI: 10.1371/journal.pone.0311561
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311561. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.