Author
Listed:
- Xiaocheng Gao
- Hui Zhang
- Hui Qi
- Bin He
Abstract
Studies of macroscopic speed modeling of bidirectional pedestrian cross-flows have relied heavily on scenario experiments, but the data itself may be deficient because large-scale scenario experiments are not easy to organize and subjects may not be walking under normal conditions. In order to explore the possibility of using microscopic pedestrian flow simulations for macroscopic speed modeling of pedestrian flows, a series of two-way pedestrian cross-flow simulation experiments were designed. Bidirectional pedestrian flows are defined as Peds1 and Peds2. The crossing angle and pedestrian flow rate are used as variables, and a bidirectional pedestrian flows simulation is designed as an orthogonal experiment. The crossing angles range from 15 to 165 degrees, and bidirectional pedestrian flow rate range from 1 ped/s to 8 ped/s. A series of simulations are built and performed on the GIS agent-based modeling architecture (GAMA) platform. By analyzing the flow data of bidirectional flows in the crossing area, it is found that when the Peds1 density falls below a threshold, Peds1 speed is determined by pedestrians themselves and mainly remains in a free flow state; otherwise, the Peds1 speed decreases with density. The clear effects such as Peds2 density on the Peds1 speed cannot be determined. A piecewise function combined with a linear function and an exponential function is constructed as the Peds1 speed model considering the influence of the crossing angle. The calibration results show that the piecewise function should be better than the non-piecewise function. Compared to the results of established studies, the results in this paper have some differences. Therefore, the simulation method cannot completely replace the scene experiments. However, this approach can provide suggestions for subsequent refinement of the experimental program, as well as a feasible direction for the construction of a speed relationship for bidirectional pedestrian flows.
Suggested Citation
Xiaocheng Gao & Hui Zhang & Hui Qi & Bin He, 2024.
"A bidirectional pedestrian macroscopic speed model construction based on pedestrian microscopic simulation experiments,"
PLOS ONE, Public Library of Science, vol. 19(10), pages 1-24, October.
Handle:
RePEc:plo:pone00:0311538
DOI: 10.1371/journal.pone.0311538
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311538. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.