IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0311459.html
   My bibliography  Save this article

Emergence to dominance: Estimating time to dominance of SARS-CoV-2 variants using nonlinear statistical models

Author

Listed:
  • Srishti Awasthi
  • Maryam Zolfaghari Dehkharghani
  • Miguel Fudolig

Abstract

Background/Objective: Relative proportion of cases in a multi-strain pandemic like the COVID-19 pandemic provides insight on how fast a newly emergent variant dominates the infected population. However, the behavior of relative proportion of emerging variants is an understudied field. We investigated the emerging behavior of dominant COVID-19 variants using nonlinear statistical methods and calculated the time to dominance of each variant.Method: We used a phenomenological approach to model national- and regional-level variant share data from the national genomic surveillance system provided by the Centers for Disease Control and Prevention to determine the best model to describe the emergence of two recent dominant variants of the SARS-CoV-2 virus: XBB.1.5 and JN.1. The proportions were modeled using logistic, Weibull, and generalized additive models. Model performance was evaluated using the Akaike Information Criteria (AIC) and the root mean square error (RMSE).Findings: The Weibull model performed the worst out of all three approaches. The generalized additive model approach slightly outperformed the logistic model based on fit statistics, but lacked in interpretability compared to the logistic model. These models were then used to estimate the time elapsed from emergence to dominance in the infected population, denoted by the time to dominance (TTD). All three models yielded similar TTD estimates. The XBB.1.5 variant was found to dominate the population faster compared to the JN.1 variant, especially in HHS Region 2 (New York) where the XBB.1.5 was believed to emerge. This research expounds on how emerging viral strains transition to dominance, informing public health interventions against future emergent COVID-19 variants and other infectious diseases.

Suggested Citation

  • Srishti Awasthi & Maryam Zolfaghari Dehkharghani & Miguel Fudolig, 2025. "Emergence to dominance: Estimating time to dominance of SARS-CoV-2 variants using nonlinear statistical models," PLOS ONE, Public Library of Science, vol. 20(4), pages 1-17, April.
  • Handle: RePEc:plo:pone00:0311459
    DOI: 10.1371/journal.pone.0311459
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311459
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0311459&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0311459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zubair Ahmad & Zahra Almaspoor & Faridoon Khan & Mahmoud El-Morshedy, 2022. "On Predictive Modeling Using a New Flexible Weibull Distribution and Machine Learning Approach: Analyzing the COVID-19 Data," Mathematics, MDPI, vol. 10(11), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yas Al-Hadeethi & Intesar F. El Ramley & Hiba Mohammed & Nada M. Bedaiwi & Abeer Z. Barasheed, 2024. "A Novel Computational Instrument Based on a Universal Mixture Density Network with a Gaussian Mixture Model as a Backbone for Predicting COVID-19 Variants’ Distributions," Mathematics, MDPI, vol. 12(8), pages 1-24, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.