Author
Listed:
- Małgorzata Przybyła-Kasperek
- Kwabena Frimpong Marfo
Abstract
The paper introduces a novel approach for constructing a global model utilizing multilayer perceptron (MLP) neural networks and dispersed data sources. These dispersed data are independently gathered in various local tables, each potentially containing different objects and attributes, albeit with some shared elements (objects and attributes). Our approach involves the development of local models based on these local tables imputed with some artificial objects. Subsequently, local models are aggregated using weighted techniques. To complete, the global model is retrained using some global objects. In this study, the proposed method is compared with two existing approaches from the literature—homogeneous and heterogeneous multi-model classifiers. The analysis reveals that the proposed approach consistently outperforms these existing methods across multiple evaluation criteria including classification accuracy, balanced accuracy, F1−score, and precision. The results demonstrate that the proposed method significantly outperforms traditional ensemble classifiers and homogeneous ensembles of MLPs. Specifically, the proposed approach achieves an average classification accuracy improvement of 15% and a balanced accuracy enhancement of 12% over the baseline methods mentioned above. Moreover, in practical applications such as healthcare and smart agriculture, the model showcases superior properties by providing a single model that is easier to use and interpret. These improvements underscore the model’s robustness and adaptability, making it a valuable tool for diverse real-world applications.
Suggested Citation
Małgorzata Przybyła-Kasperek & Kwabena Frimpong Marfo, 2024.
"A multi-layer perceptron neural network for varied conditional attributes in tabular dispersed data,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-56, December.
Handle:
RePEc:plo:pone00:0311041
DOI: 10.1371/journal.pone.0311041
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311041. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.