Author
Listed:
- Zhongnan Tian
- Peng Liang
- Bochao Zhai
- Yue Zhou
Abstract
To investigate the advantageous effects of incorporating industrial solid waste basic oxygen furnace (BOF) slag on the mechanical characteristics of warm-mixed rubber asphalt (WMRA) and hot-mixed rubber asphalt (HMRA) mixture, varying proportions of BOF slag were substituted for limestone coarse aggregates (0%, 25%, 50%, and 75%). Additionally, a 1.5% dosage of Sasobit warm-mixed modifier was introduced to prepare the rubber asphalt. Subsequent to preparation, both static mechanical tests (including Marshall and indirect tensile tests) and dynamic mechanical tests (including dynamic creep and elastic modulus tests) were conducted to evaluate the influence of BOF slag on the mechanical behavior of WMRA and HMRA mixtures across different substitution levels. Following testing, a two-way analysis of variance (ANOVA) was employed to dissect the impact of BOF slag content and Sasobit warm-mixed modifier on the static and dynamic mechanical properties of the rubber asphalt mixtures. The findings reveal that BOF slag exhibits commendable engineering aggregate properties, enabling substantial substitution of coarse aggregates in both HMRA and WMRA mixtures. As the proportion of BOF slag increases, it enhances the resistance of asphalt mixtures to permanent deformation and cracking under static and dynamic loading conditions, while broadening the range of elastic deformation for both WMRA and HMRA mixtures subjected to repeated loading. Moreover, a synergistic enhancement in the resistance of rubber asphalt mixtures to dynamic load-induced deformation is observed when employing both BOF slag and Sasobit warm-mixed modifier. The findings offer valuable insights for enhancing the performance of WMRA and HMRA mixtures, as well as broadening the utilization of BOF slag and waste rubber.
Suggested Citation
Zhongnan Tian & Peng Liang & Bochao Zhai & Yue Zhou, 2024.
"Advancing the performance characteristics of rubber asphalt mixtures through the integration of Basic Oxygen Furnace (BOF) slag: A focus on static and dynamic mechanical enhancements,"
PLOS ONE, Public Library of Science, vol. 19(9), pages 1-17, September.
Handle:
RePEc:plo:pone00:0310499
DOI: 10.1371/journal.pone.0310499
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0310499. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.