Author
Listed:
- Sazzli Kasim
- Junjie Tang
- Sorayya Malek
- Khairul Shafiq Ibrahim
- Raja Ezman Raja Shariff
- Jesvinna Kaur Chima
Abstract
Background: Regional Wall Motion Abnormality (RWMA) serves as an early indicator of myocardial infarction (MI), the global leader in mortality. Accurate and early detection of RWMA is vital for the successful treatment of MI. Current automated echocardiography analyses typically concentrate on peak values from left ventricular (LV) displacement curves, based on LV contour annotations or key frames during the heart’s systolic or diastolic phases within a single echocardiographic cycle. This approach may overlook the rich motion field features available in multi-cycle cardiac data, which could enhance RWMA detection. Methods: In this research, we put forward an innovative approach to detect RWMA by harnessing motion information across multiple echocardiographic cycles and multi-views. Our methodology synergizes U-Net-based segmentation with optical flow algorithms for detailed cardiac structure delineation, and Temporal Convolutional Networks (ConvNet) to extract nuanced motion features. We utilize a variety of machine learning and deep learning classifiers on both A2C and A4C views echocardiograms to enhance detection accuracy. A three-phase algorithm—originating from the HMC-QU dataset—incorporates U-Net for segmentation, followed by optical flow for cardiac wall motion field features. Temporal ConvNet, inspired by the Temporal Segment Network (TSN), is then applied to interpret these motion field features, independent of traditional cardiac parameter curves or specific key phase frame inputs. Results: Employing five-fold cross-validation, our SVM classifier demonstrated high performance, with a sensitivity of 93.13%, specificity of 83.61%, precision of 88.52%, and an F1 score of 90.39%. When compared with other studies using the HMC-QU datasets, these Fig s stand out, underlining our method’s effectiveness. The classifier also attained an overall accuracy of 89.25% and Area Under the Curve (AUC) of 95%, reinforcing its potential for reliable RWMA detection in echocardiographic analysis. Conclusions: This research not only demonstrates a novel technique but also contributes a more comprehensive and precise tool for early myocardial infarction diagnosis.
Suggested Citation
Sazzli Kasim & Junjie Tang & Sorayya Malek & Khairul Shafiq Ibrahim & Raja Ezman Raja Shariff & Jesvinna Kaur Chima, 2024.
"Enhancing reginal wall abnormality detection accuracy: Integrating machine learning, optical flow algorithms, and temporal convolutional networks in multi-view echocardiography,"
PLOS ONE, Public Library of Science, vol. 19(9), pages 1-20, September.
Handle:
RePEc:plo:pone00:0310107
DOI: 10.1371/journal.pone.0310107
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0310107. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.