IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0310084.html
   My bibliography  Save this article

A hybrid Transformer-LSTM model apply to glucose prediction

Author

Listed:
  • QingXiang Bian
  • Azizan As’arry
  • XiangGuo Cong
  • Khairil Anas bin Md Rezali
  • Raja Mohd Kamil bin Raja Ahmad

Abstract

The global prevalence of diabetes is escalating, with estimates indicating that over 536.6 million individuals were afflicted by 2021, accounting for approximately 10.5% of the world’s population. Effective management of diabetes, particularly monitoring and prediction of blood glucose levels, remains a significant challenge due to the severe health risks associated with inaccuracies, such as hypoglycemia and hyperglycemia. This study addresses this critical issue by employing a hybrid Transformer-LSTM (Long Short-Term Memory) model designed to enhance the accuracy of future glucose level predictions based on data from Continuous Glucose Monitoring (CGM) systems. This innovative approach aims to reduce the risk of diabetic complications and improve patient outcomes. We utilized a dataset which contain more than 32000 data points comprising CGM data from eight patients collected by Suzhou Municipal Hospital in Jiangsu Province, China. This dataset includes historical glucose readings and equipment calibration values, making it highly suitable for developing predictive models due to its richness and real-time applicability. Our findings demonstrate that the hybrid Transformer-LSTM model significantly outperforms the standard LSTM model, achieving Mean Square Error (MSE) values of 1.18, 1.70, and 2.00 at forecasting intervals of 15, 30, and 45 minutes, respectively. This research underscores the potential of advanced machine learning techniques in the proactive management of diabetes, a critical step toward mitigating its impact.

Suggested Citation

  • QingXiang Bian & Azizan As’arry & XiangGuo Cong & Khairil Anas bin Md Rezali & Raja Mohd Kamil bin Raja Ahmad, 2024. "A hybrid Transformer-LSTM model apply to glucose prediction," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-13, September.
  • Handle: RePEc:plo:pone00:0310084
    DOI: 10.1371/journal.pone.0310084
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0310084
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0310084&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0310084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William P T M van Doorn & Yuri D Foreman & Nicolaas C Schaper & Hans H C M Savelberg & Annemarie Koster & Carla J H van der Kallen & Anke Wesselius & Miranda T Schram & Ronald M A Henry & Pieter C Dag, 2021. "Machine learning-based glucose prediction with use of continuous glucose and physical activity monitoring data: The Maastricht Study," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0310084. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.