Author
Listed:
- Hong-Jie Liang
- Ling-Long Li
- Guang-Zhong Cao
Abstract
Motor imagery (MI)-electroencephalography (EEG) decoding plays an important role in brain-computer interface (BCI), which enables motor-disabled patients to communicate with external world via manipulating smart equipment. Currently, deep learning (DL)-based methods are popular for EEG decoding. Whereas the utilization efficiency of EEG features in frequency and temporal domain is not sufficient, which results in poor MI classification performance. To address this issue, an EEG-based MI classification model based on a frequency enhancement module, a deformable convolutional network, and a crop module (FDCN-C) is proposed. Firstly, the frequency enhancement module is innovatively designed to address the issue of extracting frequency information. It utilizes convolution kernels at continuous time scales to extract features across different frequency bands. These features are screened by calculating attention and integrated into the original EEG data. Secondly, for temporal feature extraction, a deformable convolution network is employed to enhance feature extraction capabilities, utilizing offset parameters to modulate the convolution kernel size. In spatial domain, a one-dimensional convolution layer is designed to integrate all channel information. Finally, a dilated convolution is used to form a crop classification module, wherein the diverse receptive fields of the EEG data are computed multiple times. Two public datasets are employed to verify the proposed FDCN-C model, the classification accuracy obtained from the proposed model is greater than that of state-of-the-art methods. The model’s accuracy has improved by 14.01% compared to the baseline model, and the ablation study has confirmed the effectiveness of each module in the model.
Suggested Citation
Hong-Jie Liang & Ling-Long Li & Guang-Zhong Cao, 2024.
"FDCN-C: A deep learning model based on frequency enhancement, deformable convolution network, and crop module for electroencephalography motor imagery classification,"
PLOS ONE, Public Library of Science, vol. 19(11), pages 1-23, November.
Handle:
RePEc:plo:pone00:0309706
DOI: 10.1371/journal.pone.0309706
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0309706. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.