Author
Listed:
- Hong Li
- Norriza Hussin
- Dandan He
- Zexun Geng
- Shengpu Li
Abstract
With the development of deep learning technology, convolutional neural networks have made great progress in the field of image segmentation. However, for complex scenes and multi-scale target images, the existing technologies are still unable to achieve effective image segmentation. In view of this, an image segmentation model based on residual connection and feature fusion is proposed. The model makes comprehensive use of the deep feature extraction ability of residual connections and the multi-scale feature integration ability of feature fusion. In order to solve the problem of background complexity and information loss in traditional image segmentation, experiments were carried out on two publicly available data sets. The results showed that in the ISPRS Vaihingen dataset and the Caltech UCSD Birds200 dataset, when the model completed the 56th and 84th iterations, respectively, the average accuracy of FRes-MFDNN was the highest, which was 97.89% and 98.24%, respectively. In the ISPRS Vaihingen dataset and the Caltech UCSD Birds200 dataset, when the system model ran to 0.20s and 0.26s, the F1 value of the FRes-MFDNN method was the largest, and the F1 value approached 100% infinitely. The FRes-MFDNN segmented four images in the ISPRS Vaihingen dataset, and the segmentation accuracy of images 1, 2, 3 and 4 were 91.44%, 92.12%, 94.02% and 91.41%, respectively. In practical applications, the MSRF-Net method, LBN-AA-SPN method, ARG-Otsu method, and FRes-MFDNN were used to segment unlabeled bird images. The results showed that the FRes-MFDNN was more complete in details, and the overall effect was significantly better than the other three models. Meanwhile, in ordinary scene images, although there was a certain degree of noise and occlusion, the model still accurately recognized and segmented the main bird images. The results show that compared with the traditional model, after FRes-MFDNN segmentation, the completeness, detail, and spatial continuity of pixels have been significantly improved, making it more suitable for complex scenes.
Suggested Citation
Hong Li & Norriza Hussin & Dandan He & Zexun Geng & Shengpu Li, 2024.
"Design of image segmentation model based on residual connection and feature fusion,"
PLOS ONE, Public Library of Science, vol. 19(10), pages 1-20, October.
Handle:
RePEc:plo:pone00:0309434
DOI: 10.1371/journal.pone.0309434
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0309434. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.