Author
Listed:
- Wen-Qing Huang
- Liu Feng
- Yuan-Lie He
Abstract
Automatic pavement disease detection aims to address the inefficiency in practical detection. However, traditional methods heavily rely on low-level image analysis, handcrafted features, and classical classifiers, leading to limited effectiveness and poor generalization in complex scenarios. Although significant progress has been made with deep learning methods, challenges persist in handling high-resolution images and diverse disease types. Therefore, this paper proposes a novel approach based on the lightweight Transformer Patch Labeling Network (LTPLN) to enhance the efficiency of automatic pavement disease detection and overcome the limitations of existing methods. Firstly, the input images undergo histogram equalization preprocessing to enhance image quality. Subsequently, the images are evenly partitioned into small patch blocks, serving as inputs to the enhanced Transformer model. This enhancement strategy involves integrating feature map labels at each layer of the model to reduce computational complexity and enhance model lightweightness. Furthermore, a depthwise separable convolution module is introduced into the Transformer architecture to introduce convolutional bias and reduce the model’s dependence on large amounts of data. Finally, an iterative training process utilizing the label distillation strategy based on expectation maximization is employed to update the labels of patch blocks and roughly locate the positions of pavement diseases under weak supervision. Experimental results demonstrate that compared to the baseline model, the proposed enhanced model achieves a reduction of 2.5G Flops computational complexity and a 16% speed improvement on a private pavement disease dataset, with only a 1.2 percentage point decrease in AUC accuracy. Moreover, compared to other mainstream image classification models, this model exhibits more balanced performance on a public dataset, with improved accuracy and speed that better align with the practical requirements of pavement inspection. These findings highlight the significant performance advantages of the LTPLN model in automatic pavement disease detection tasks, making it more efficiently applicable in real-world scenarios.
Suggested Citation
Wen-Qing Huang & Liu Feng & Yuan-Lie He, 2024.
"LTPLN: Automatic pavement distress detection,"
PLOS ONE, Public Library of Science, vol. 19(10), pages 1-24, October.
Handle:
RePEc:plo:pone00:0309172
DOI: 10.1371/journal.pone.0309172
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0309172. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.