IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0308934.html
   My bibliography  Save this article

Vessel trajectory classification via transfer learning with Deep Convolutional Neural Networks

Author

Listed:
  • Hwan Kim
  • Mingyu Choi
  • Sekil Park
  • Sungsu Lim

Abstract

The classification of vessel trajectories using Automatic Identification System (AIS) data is crucial for ensuring maritime safety and the efficient navigation of ships. The advent of deep learning has brought about more effective classification methods, utilizing Convolutional Neural Networks (CNN). However, existing CNN-based approaches primarily focus on either sailing or loitering movement patterns and struggle to capture valuable features and subtle differences between these patterns from input images. In response to these limitations, we firstly introduce a novel framework, Dense121-VMC, based on Deep Convolutional Neural Networks (DCNN) with transfer learning for simultaneous extraction and classification of both sailing and loitering trajectories. Our approach efficiently performs in extracting significant features from input images and in identifying subtle differences in each vessel’s trajectory. Additionally, transfer learning effectively reduces data requirements and addresses the issue of overfitting. Through extended experiments, we demonstrate the novelty of proposed Dense121-VMC framework, achieving notable contributions for vessel trajectory classification.

Suggested Citation

  • Hwan Kim & Mingyu Choi & Sekil Park & Sungsu Lim, 2024. "Vessel trajectory classification via transfer learning with Deep Convolutional Neural Networks," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-15, August.
  • Handle: RePEc:plo:pone00:0308934
    DOI: 10.1371/journal.pone.0308934
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308934
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0308934&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0308934?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hwan Kim & Sungsu Lim, 2021. "Temporal Patternization of Power Signatures for Appliance Classification in NILM," Energies, MDPI, vol. 14(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amitay Kligman & Arbel Yaniv & Yuval Beck, 2023. "Energy Disaggregation of Type I and II Loads by Means of Birch Clustering and Watchdog Timers," Energies, MDPI, vol. 16(7), pages 1-21, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0308934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.