Author
Listed:
- Mohammad Tahmoures
- Afshin Honarbakhsh
- Sayed Fakhreddin Afzali
- Mehdi Nourzadeh Hadad
- Yaser Ostovari
Abstract
Precise prediction of soil salinity using visible, and near-infrared (vis-NIR) spectroscopy is crucial for ensuring food security and effective environmental management. This paper focuses on the precise prediction of soil salinity utilizing visible and near-infrared (vis-NIR) spectroscopy, a critical factor for food security and effective environmental management. The objective is to utilize vis-NIR spectra alongside a multiple regression model (MLR) and a random forest (RF) modeling approach to predict soil salinity across various land use types, such as farmlands, bare lands, and rangelands accurately. To this end, we selected 150 sampling points representatives of these diverse land uses. At each point, we collected soil samples to measure the soil salinity (ECe) and employed a portable spectrometer to capture the spectral reflectance across the full wavelength range of 400 to 2400 nm. The methodology involved using both individual spectral reflectance values and combinations of reflectance values from different wavelengths as input variables for developing the MLR and RF models. The results indicated that the RF model (RMSE = 4.85 dS m-1, R2 = 0.87, and RPD = 3.15), utilizing combined factors as input variables, outperformed others. Furthermore, our analysis across different land uses revealed that models incorporating combined input variables yielded significantly better results, particularly for farmlands and rangelands. This study underscores the potential of combining vis-NIR spectroscopy with advanced modeling techniques to enhance the accuracy of soil salinity predictions, thereby supporting more informed agricultural and environmental management decisions.
Suggested Citation
Mohammad Tahmoures & Afshin Honarbakhsh & Sayed Fakhreddin Afzali & Mehdi Nourzadeh Hadad & Yaser Ostovari, 2024.
"Quantifying salinity in calcareous soils through advanced spectroscopic models: A comparative study of random forests and regression techniques across diverse land use systems,"
PLOS ONE, Public Library of Science, vol. 19(8), pages 1-13, August.
Handle:
RePEc:plo:pone00:0307853
DOI: 10.1371/journal.pone.0307853
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307853. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.