IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0307823.html
   My bibliography  Save this article

Application of machine learning in in vitro propagation of endemic Lilium akkusianum R. Gämperle

Author

Listed:
  • Mehmet Tütüncü

Abstract

A successful regeneration protocol was developed for micropropagation of Lilium akkusianum R. Gämperle, an endemic species of Türkiye, from scale explants. The study also aimed to evaluate the effects of Meta-Topolin (mT) and N6-Benzyladenine (BA) on in vitro regeneration. The Murashige and Skoog medium (MS) supplemented with different levels of α-naphthaleneacetic acid (NAA)/BA and NAA/mT were used for culture initiation in the darkness. The highest callus rates were observed on explants cultured on MS medium with 2.0 mg/L NAA + 0.5 mg/L mT (83.31%), and the highest adventitious bud number per explant was 4.98 in MS medium with 0.5 mg/L NAA + 1.5 mg/L mT. Adventitious buds were excised and cultured in 16/8 h photoperiod conditions. The highest average shoot number per explant was 4.0 in MS medium with 2.0 mg/L mT + 1.0 mg/L NAA. Shoots were rooted with the highest rate (90%) in the medium with the 1.0 mg/L IBA, and the highest survival rate (87.5%) was recorded in rooted shoots in the same medium. The ISSR marker system showed that regenerated plantlets were genetically stable. Besides traditional tissue culture techniques used in the current study, the potential for improving the effectiveness of L. akkusianum propagation protocols by incorporating machine learning methodologies was evaluated. ML techniques enhance lily micropropagation by analyzing complex biological processes, merging with traditional methods. This collaborative approach validates current protocols, allowing ongoing improvements. Embracing machine learning in endemic L. akkusianum studies contributes to sustainable plant propagation, promoting conservation and responsible genetic resource utilization in agriculture.

Suggested Citation

  • Mehmet Tütüncü, 2024. "Application of machine learning in in vitro propagation of endemic Lilium akkusianum R. Gämperle," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-18, July.
  • Handle: RePEc:plo:pone00:0307823
    DOI: 10.1371/journal.pone.0307823
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307823
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0307823&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0307823?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.