Author
Listed:
- Farnoosh Arefi
- Amir M Mansourian
- Shohreh Kasaei
Abstract
Recently, there has been growing interest in deep spectral methods for image localization and segmentation, influenced by traditional spectral segmentation approaches. These methods reframe the image decomposition process as a graph partitioning task by extracting features using self-supervised learning and utilizing the Laplacian of the affinity matrix to obtain eigensegments. However, instance segmentation has received less attention than other tasks within the context of deep spectral methods. This paper addresses that not all channels of the feature map extracted from a self-supervised backbone contain sufficient information for instance segmentation purposes. Some channels are noisy and hinder the accuracy of the task. To overcome this issue, this paper proposes two channel reduction modules, Noise Channel Reduction (NCR) and Deviation-based Channel Reduction (DCR). The NCR retains channels with lower entropy, as they are less likely to be noisy, while DCR prunes channels with low standard deviation, as they lack sufficient information for effective instance segmentation. Furthermore, the paper demonstrates that the dot product, commonly used in deep spectral methods, is not suitable for instance segmentation due to its sensitivity to feature map values, potentially leading to incorrect instance segments. A novel similarity metric called Bray-curtis over Chebyshev (BoC) is proposed to address this issue. This metric considers the distribution of features in addition to their values, providing a more robust similarity measure for instance segmentation. Quantitative and qualitative results on the Youtube-VIS 2019 and OVIS datasets highlight the improvements achieved by the proposed channel reduction methods and using BoC instead of the conventional dot product for creating the affinity matrix. These improvements regarding mean Intersection over Union (mIoU) and extracted instance segments are observed, demonstrating enhanced instance segmentation performance. The code is available on: https://github.com/farnooshar/SpecUnIIS.
Suggested Citation
Farnoosh Arefi & Amir M Mansourian & Shohreh Kasaei, 2024.
"Deep spectral improvement for unsupervised image instance segmentation,"
PLOS ONE, Public Library of Science, vol. 19(10), pages 1-24, October.
Handle:
RePEc:plo:pone00:0307432
DOI: 10.1371/journal.pone.0307432
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307432. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.