IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0307360.html
   My bibliography  Save this article

Nearby and non-nested genes in the human genome have more similar genotype tissue expression

Author

Listed:
  • Jiahong Dong
  • Stephen Brown
  • Kevin Truong

Abstract

Neighboring genes within a shared promoter arrangement (i.e. opposite direction with the neighboring ends as the transcriptional start sites) are expected to have a high similarity in genotype tissue expression due to the potential overlap in the promoter region. This raises the question of whether similarity in expression profiles depends on orientation of the neighboring genes and whether there exist thresholds of locality where the similarity diminishes. Thus, in this work, we compared genotype tissue expression profiles at different genomic orientations and localities. Interestingly, there exist gene pairs in the human genome with very high or low expression similarity. Shorter chromosomes tend to have more similarly expressed genes. Also, a cluster of 3 adjacent genes within the average range of 20 to 60 kilobase pairs can have very similar expression profiles regardless of their orientations. However, when genes are nested and in opposite orientations, a lower than expected similarity was observed. Lastly, in cases where genotype tissue expression data does not exist or have low read counts (e.g. non-coding RNA), our identified influencing range can be a first estimate of the genotype tissue expression.

Suggested Citation

  • Jiahong Dong & Stephen Brown & Kevin Truong, 2024. "Nearby and non-nested genes in the human genome have more similar genotype tissue expression," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-13, September.
  • Handle: RePEc:plo:pone00:0307360
    DOI: 10.1371/journal.pone.0307360
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307360
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0307360&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0307360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthieu Santos & Stéphanie Backer & Frédéric Auradé & Matthew Man-Kin Wong & Maud Wurmser & Rémi Pierre & Francina Langa & Marcio Cruzeiro & Alain Schmitt & Jean-Paul Concordet & Athanassia Sotiropou, 2022. "A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Jonathan P. Ling & Christopher Wilks & Rone Charles & Patrick J. Leavey & Devlina Ghosh & Lizhi Jiang & Clayton P. Santiago & Bo Pang & Anand Venkataraman & Brian S. Clark & Abhinav Nellore & Ben Lang, 2020. "ASCOT identifies key regulators of neuronal subtype-specific splicing," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthieu Dos Santos & Akansha M. Shah & Yichi Zhang & Svetlana Bezprozvannaya & Kenian Chen & Lin Xu & Weichun Lin & John R. McAnally & Rhonda Bassel-Duby & Ning Liu & Eric N. Olson, 2023. "Opposing gene regulatory programs governing myofiber development and maturation revealed at single nucleus resolution," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Xuchen Zhang & Pei-Yi Lin & Kif Liakath-Ali & Thomas C. Südhof, 2022. "Teneurins assemble into presynaptic nanoclusters that promote synapse formation via postsynaptic non-teneurin ligands," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Ningyuan You & Chang Liu & Yuxin Gu & Rong Wang & Hanying Jia & Tianyun Zhang & Song Jiang & Jinsong Shi & Ming Chen & Min-Xin Guan & Siqi Sun & Shanshan Pei & Zhihong Liu & Ning Shen, 2024. "SpliceTransformer predicts tissue-specific splicing linked to human diseases," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.