IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0307319.html
   My bibliography  Save this article

Design of image intelligent focusing system based on improved SMD function and RBF algorithm

Author

Listed:
  • Qianwei Deng
  • Chee-Onn Wong
  • Roopesh Sitharan
  • Xiangbin Meng

Abstract

The utilization of digital statistical processes in images and videos can effectively tackle numerous challenges encountered in optical sensors. This research endeavors to overcome the limitations inherent in traditional focus models, particularly their inadequate accuracy. It aims to bolster the precision of real-time perception and dynamic control by employing enhanced data fusion methodologies. The ultimate objective is to facilitate information services that enable seamless interaction and profound integration between computational and physical processes within an open environment. To achieve this, an enhanced sum-modulus difference (SMD) evaluation function has been proposed. This innovation is founded on the concept of threshold value evaluation, aimed at rectifying the accuracy shortcomings of traditional focusing models. Through the computation of each gray value after threshold segmentation, the method identifies the most suitable threshold for image segmentation. This identified threshold is then applied to the focus search strategy employing the radial basis function (RBF) algorithm. Furthermore, an intelligent focusing system has been developed on the Zynq development platform, encompassing both hardware design and software program development. The test results affirm that the focusing model based on the improved SMD evaluation function rapidly identifies the peak point of the gray variance curve, ascertains the optimal focal plane position, and notably enhances the sensitivity of the focusing model.

Suggested Citation

  • Qianwei Deng & Chee-Onn Wong & Roopesh Sitharan & Xiangbin Meng, 2024. "Design of image intelligent focusing system based on improved SMD function and RBF algorithm," PLOS ONE, Public Library of Science, vol. 19(8), pages 1-18, August.
  • Handle: RePEc:plo:pone00:0307319
    DOI: 10.1371/journal.pone.0307319
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307319
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0307319&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0307319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mengjia He & Yingnian Wu & Tao Wang & Yujie Chen, 2021. "Research on dry electrode SSVEP classification algorithm based on improved convolutional neural network," International Journal of Service and Computing Oriented Manufacturing, Inderscience Enterprises Ltd, vol. 4(1), pages 70-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed Sabri & Rosanna Verde & Antonio Balzanella & Fabrizio Maturo & Hamid Tairi & Ali Yahyaouy & Jamal Riffi, 2024. "A Novel Classification Algorithm Based on the Synergy Between Dynamic Clustering with Adaptive Distances and K-Nearest Neighbors," Journal of Classification, Springer;The Classification Society, vol. 41(2), pages 264-288, July.
    2. Sepideh Radhoush & Bradley M. Whitaker & Hashem Nehrir, 2023. "An Overview of Supervised Machine Learning Approaches for Applications in Active Distribution Networks," Energies, MDPI, vol. 16(16), pages 1-29, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.