Author
Listed:
- M A JiMing
- Duan HongYu
- Wang YuFan
- Wang LiNa
Abstract
With the development of society and changes in the human living environment, people are increasingly attaching importance to their own health. Regarding medical imaging examinations of certain parts of the body, the process of medical image segmentation has become extremely important. This paper presents a novel hybrid algorithm: SAOBL-IA, a fusion of the Simulated Annealing(SA), Opposition-based Learning(OBL)and Island Algorithm(IA). The Island Algorithm itself suffers from slow convergence speed and the tendency to get stuck in local optimum. To address these limitations, we introduce opposition-based learning to enhance the search range and avoid local optimum. Furthermore, we leverage the simulated annealing approach to accelerate the convergence of SAOBL-IA. Comparing the experimental results, it can be seen that SAOBL-IA has better comprehensive performance. Subsequently, the SAOBL-IA algorithm is utilized in conjunction with an optimized two-dimensional OTSU fusion segmentation technique for the purpose of medical image processing. This study proposes an application of image segmentation based on the SAOBL-IA. The segmentation of pixels around the background and target regions using the two-dimensional OTSU method faces challenges in terms of accuracy. To address this issue, an adaptive thresholding technique known as Adaptive Forking is employed for optimization. By determining the slope of the fork based on the misclassified pixel ratio, enhanced segmentation accuracy can be achieved. This improved approach is then integrated with the SAOBL-IA algorithm and applied to the segmentation of lung medical images. The experimental findings show that the amalgamation of SAOBL-IA with the adaptive two-dimensional OTSU segmentation approach, as proposed in this study, manifests superior segmentation speed and enhanced precision in the context of medical image segmentation.
Suggested Citation
M A JiMing & Duan HongYu & Wang YuFan & Wang LiNa, 2024.
"Medical image segmentation based on simulated annealing and opposition-based learning island algorithm,"
PLOS ONE, Public Library of Science, vol. 19(7), pages 1-23, July.
Handle:
RePEc:plo:pone00:0307278
DOI: 10.1371/journal.pone.0307278
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307278. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.