IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0307206.html
   My bibliography  Save this article

ASATrans: Adaptive spatial aggregation transformer for cervical nuclei segmentation on rough edges

Author

Listed:
  • Hualin Sun
  • Shengyao Hu

Abstract

The main characteristic of cervical cytopathy is reflected in the edge shape of nuclei. Existing computer-aided diagnostic techniques can clearly segment individual nuclei, but cannot clearly segment the rough edges of adherent nucleus. Therefore, we propose an effective method (ASATrans) to accurately segment rough cervical nuclei edges by exploring adaptive spatial aggregation methods. ASATrans creates a Multi-Receptive Embedding Layer that samples patches using diverse-scale kernels. This approach provides cross-scale features to each embedding, preventing semantic corruption that might arise from mapping disparate patches to analogous underlying representations. Furthermore, we design Adaptive Pixel Adjustment Block by introducing a long-range dependency and adaptive spatial aggregation. This is achieved through the stratification of the spatial aggregation process into distinct groups. Each group is given an exclusive sampling volume and modulation scale, fostering a collaborative learning paradigm that combines local features and global dependencies. This collaborative approach to feature extraction achieves adaptability, mitigates interference from unnecessary pixels, and allows for better segmentation of edges in the nucleus. Extensive experiments on two cervical nuclei datasets (HRASPP Dataset, ISBI Dataset), demonstrating that our proposed ASATrans outperforms other state-of-the-art methods by a large margin.

Suggested Citation

  • Hualin Sun & Shengyao Hu, 2024. "ASATrans: Adaptive spatial aggregation transformer for cervical nuclei segmentation on rough edges," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-18, July.
  • Handle: RePEc:plo:pone00:0307206
    DOI: 10.1371/journal.pone.0307206
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307206
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0307206&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0307206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Igor V. Tetko & Pavel Karpov & Ruud Deursen & Guillaume Godin, 2020. "State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Fang & Junren Li & Ming Zhao & Li Tan & Jian-Guang Lou, 2023. "Single-step retrosynthesis prediction by leveraging commonly preserved substructures," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Yuqiang Han & Xiaoyang Xu & Chang-Yu Hsieh & Keyan Ding & Hongxia Xu & Renjun Xu & Tingjun Hou & Qiang Zhang & Huajun Chen, 2024. "Retrosynthesis prediction with an iterative string editing model," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Yasuhiro Yoshikai & Tadahaya Mizuno & Shumpei Nemoto & Hiroyuki Kusuhara, 2024. "Difficulty in chirality recognition for Transformer architectures learning chemical structures from string representations," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Jinho Chang & Jong Chul Ye, 2024. "Bidirectional generation of structure and properties through a single molecular foundation model," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Umit V. Ucak & Islambek Ashyrmamatov & Junsu Ko & Juyong Lee, 2022. "Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yu Shee & Haote Li & Pengpeng Zhang & Andrea M. Nikolic & Wenxin Lu & H. Ray Kelly & Vidhyadhar Manee & Sanil Sreekumar & Frederic G. Buono & Jinhua J. Song & Timothy R. Newhouse & Victor S. Batista, 2024. "Site-specific template generative approach for retrosynthetic planning," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Yu Wang & Chao Pang & Yuzhe Wang & Junru Jin & Jingjie Zhang & Xiangxiang Zeng & Ran Su & Quan Zou & Leyi Wei, 2023. "Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Weihe Zhong & Ziduo Yang & Calvin Yu-Chian Chen, 2023. "Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.