Author
Listed:
- Shumaila Khan
- Iqbal Qasim
- Wahab Khan
- Aurangzeb Khan
- Javed Ali Khan
- Ayman Qahmash
- Yazeed Yasin Ghadi
Abstract
Sarcasm detection has emerged due to its applicability in natural language processing (NLP) but lacks substantial exploration in low-resource languages like Urdu, Arabic, Pashto, and Roman-Urdu. While fewer studies identifying sarcasm have focused on low-resource languages, most of the work is in English. This research addresses the gap by exploring the efficacy of diverse machine learning (ML) algorithms in identifying sarcasm in Urdu. The scarcity of annotated datasets for low-resource language becomes a challenge. To overcome the challenge, we curated and released a comparatively large dataset named Urdu Sarcastic Tweets (UST) Dataset, comprising user-generated comments from (former Twitter). Automatic sarcasm detection in text involves using computational methods to determine if a given statement is intended to be sarcastic. However, this task is challenging due to the influence of the user’s behavior and attitude and their expression of emotions. To address this challenge, we employ various baseline ML classifiers to evaluate their effectiveness in detecting sarcasm in low-resource languages. The primary models evaluated in this study are support vector machine (SVM), decision tree (DT), K-Nearest Neighbor Classifier (K-NN), linear regression (LR), random forest (RF), Naïve Bayes (NB), and XGBoost. Our study’s assessment involved validating the performance of these ML classifiers on two distinct datasets—the Tanz-Indicator and the UST dataset. The SVM classifier consistently outperformed other ML models with an accuracy of 0.85 across various experimental setups. This research underscores the importance of tailored sarcasm detection approaches to accommodate specific linguistic characteristics in low-resource languages, paving the way for future investigations. By providing open access to the UST dataset, we encourage its use as a benchmark for sarcasm detection research in similar linguistic contexts.
Suggested Citation
Shumaila Khan & Iqbal Qasim & Wahab Khan & Aurangzeb Khan & Javed Ali Khan & Ayman Qahmash & Yazeed Yasin Ghadi, 2024.
"An automated approach to identify sarcasm in low-resource language,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-29, December.
Handle:
RePEc:plo:pone00:0307186
DOI: 10.1371/journal.pone.0307186
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0307186. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.