Author
Listed:
- James Cushway
- Liam Murphy
- J Geoffrey Chase
- Geoffrey Shaw
- Thomas Desaive
- Cong Zhou
Abstract
Positive end-expiratory pressure results in a sustained positive intrathoracic pressure, which exerts pressure on intrathoracic vessels, resulting in cardiopulmonary interactions. This sustained positive intrathoracic pressure is known to decrease cardiac preload, and thus, decrease venous return, ultimately reducing both the stroke volume and stressed blood volume of the cardiovascular system. Currently, cardiovascular and pulmonary care are provided independently of one another. That positive end-expiratory pressure alters both stroke volume and stressed blood volume suggests both the pulmonary and cardiovascular state should be conjointly optimised. Optimising these systems in isolation may benefit one system, but have highly detrimental effects on the other. A combined cardiopulmonary model has the potential to provide a better understanding of patient specific pulmonary and cardiovascular state, as well as resulting cardiopulmonary interactions. This would enable simultaneous optimisation of all cardiovascular and pulmonary parameters. Cardiopulmonary interactions are highly patient specific and unpredictable, making accurate modelling of these interactions challenging. A previously validated cardiopulmonary model was found to have increasing errors at high positive end-expiratory pressures. A new iteration, the alpha model, was introduced to resolve this issue. This paper aims to review the alpha model against its predecessors, the previous cardiopulmonary model, and the original three chamber cardiovascular system model. All models are used to identify cardiovascular system parameters from measurements of 4 pigs during a preload reduction manoeuvre. Outputs and parameter estimations from models are compared to assess the relative performance of the alpha model against its predecessors. The novel alpha model was able to reduce model errors under high positive end-expiratory pressure, resulting in more accurate model outputs. At high positive end-expiratory pressures (20cmH2O), the alpha model had an average error of 11.24%, while the original cardiopulmonary model had a much higher error of 52.21%. Furthermore, identified outputs of the alpha model more closely matched those of the 3 chamber model than the previous cardiopulmonary model. On average, at high positive end-expiratory levels, identified model parameters from the alpha model showed a 6.21% difference to those of the 3 chamber model, while the cardiopulmonary model displayed a 39.43% difference. The alpha model proved to be more stable than the original cardiopulmonary model, making it a good candidate for model based care. However, it produced similar parameter outputs to the simpler three chamber cardiovascular model, bringing into question whether the additional complexity is justified, especially considering the low availability of clinical data in the ICU. There is a critical need for model based care to guide important procedures in ICU, such as fluid therapy. Candidate models should be continuously reviewed in order to guarantee the best possible care.
Suggested Citation
James Cushway & Liam Murphy & J Geoffrey Chase & Geoffrey Shaw & Thomas Desaive & Cong Zhou, 2024.
"Model based care in the ICU: A review of potential combined cardio-pulmonary models,"
PLOS ONE, Public Library of Science, vol. 19(10), pages 1-18, October.
Handle:
RePEc:plo:pone00:0306925
DOI: 10.1371/journal.pone.0306925
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0306925. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.