Author
Listed:
- Rasool Reddy Kamireddy
- Rajesh N V P S Kandala
- Ravindra Dhuli
- Srinivasu Polinati
- Kamesh Sonti
- Ryszard Tadeusiewicz
- Paweł Pławiak
Abstract
Brain tumor detection in clinical applications is a complex and challenging task due to the intricate structures of the human brain. Magnetic Resonance (MR) imaging is widely preferred for this purpose because of its ability to provide detailed images of soft brain tissues, including brain tissue, cerebrospinal fluid, and blood vessels. However, accurately detecting brain tumors from MR images remains an open problem for researchers due to the variations in tumor characteristics such as intensity, texture, size, shape, and location. To address these issues, we propose a method that combines multi-level thresholding and Convolutional Neural Networks (CNN). Initially, we enhance the contrast of brain MR images using intensity transformations, which highlight the infected regions in the images. Then, we use the suggested CNN architecture to classify the enhanced MR images into normal and abnormal categories. Finally, we employ multi-level thresholding based on Tsallis entropy (TE) and differential evolution (DE) to detect tumor region(s) from the abnormal images. To refine the results, we apply morphological operations to minimize distortions caused by thresholding. The proposed method is evaluated using the widely used Harvard Medical School (HMS) dataset, and the results demonstrate promising performance with 99.5% classification accuracy and 92.84% dice similarity coefficient. Our approach outperforms existing state-of-the-art methods in brain tumor detection and automated disease diagnosis from MR images.
Suggested Citation
Rasool Reddy Kamireddy & Rajesh N V P S Kandala & Ravindra Dhuli & Srinivasu Polinati & Kamesh Sonti & Ryszard Tadeusiewicz & Paweł Pławiak, 2024.
"Brain MRI detection and classification: Harnessing convolutional neural networks and multi-level thresholding,"
PLOS ONE, Public Library of Science, vol. 19(8), pages 1-25, August.
Handle:
RePEc:plo:pone00:0306492
DOI: 10.1371/journal.pone.0306492
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0306492. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.