Author
Abstract
Multilevel thresholding image segmentation is one of the widely used image segmentation methods, and it is also an important means of medical image preprocessing. Replacing the original costly exhaustive search approach, swarm intelligent optimization algorithms are recently used to determine the optimal thresholds for medical image, and medical images tend to have higher bit depth. Aiming at the drawbacks of premature convergence of existing optimization algorithms for high-bit depth image segmentation, this paper presents a pyramid particle swarm optimization based on complementary inertia weights (CIWP-PSO), and the Kapur entropy is employed as the optimization objective. Firstly, according to the fitness value, the particle swarm is divided into three-layer structure. To accommodate the larger search range caused by higher bit depth, the particles in the layer with the worst fitness value are employed random opposition learning strategy. Secondly, a pair of complementary inertia weights are introduced to balance the capability of exploitation and exploration. In the part of experiments, this paper used nine high-bit depth benchmark images to test the CIWP-PSO effectiveness. Then, a group of Brain Magnetic Resonance Imaging (MRI) images with 12-bit depth are utilized to validate the advantages of CIWP-PSO compared with other segmentation algorithms based on other optimization algorithms. According to the segmentation experimental results, thresholds optimized by CIWP-PSO could achieve higher Kapur entropy, and the multi-level thresholding segmentation algorithm based on CIWP-PSO outperforms the similar algorithms in high-bit depth image segmentation. Besides, we used image segmentation quality metrics to evaluate the impact of different segmentation algorithms on images, and the experimental results show that the MRI images segmented by the CIWP-PSO has achieved the best fitness value more times than images segmented by other comparison algorithm in terms of Structured Similarity Index and Feature Similarity Index, which explains that the images segmented by CIWP-PSO has higher image quality.
Suggested Citation
Jiaqi Ma & Jianmin Hu, 2024.
"An improved particle swarm optimization for multilevel thresholding medical image segmentation,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-24, December.
Handle:
RePEc:plo:pone00:0306283
DOI: 10.1371/journal.pone.0306283
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0306283. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.