Author
Listed:
- Nick Versmessen
- Leen Van Simaey
- Abel Abera Negash
- Marjolein Vandekerckhove
- Paco Hulpiau
- Mario Vaneechoutte
- Piet Cools
Abstract
Accurate DNA quantification is key for downstream application including library preparations for whole genome sequencing (WGS) and the quantification of standards for quantitative PCR. Two commonly used technologies for nucleic acid quantification are based on spectrometry, such as NanoDrop, and fluorometry, such as Qubit. The DS–11+ Series spectrophotometer/fluorometer (DeNovix) is a UV spectrophotometry-based instrument and is a relatively new spectrophotometric method but has not yet been compared to established platforms. Here, we compared three DNA quantification platforms, including two UV spectrophotometry-based techniques (DeNovix and NanoDrop) and one fluorometry-based approach (Qubit). We used genomic prokaryotic DNA extracted from Streptococcus pneumoniae using a Roche DNA extraction kit. We also evaluated purity assessment and effect of a single freeze-thaw cycle. Spectrophotometry-based methods reported 3 to 4-fold higher mean DNA concentrations compared to Qubit, both before and after freezing. The ratio of DNA concentrations assessed by spectrophotometry on the one hand, and Qubit on the other hand, was function of the A260/280. In case DNA was pure (A260/280 between 1.7 and 2.0), the ratio DeNovix or Nanodrop vs. Qubit was close or equal to 2, while this ratio showed an incline for DNA with increasing A260/280 values > 2.0. The A260/280 and A260/230 purity ratios exhibited negligible variation across spectrophotometric methods and freezing conditions. The comparison of DNA concentrations from before and after freezing revealed no statistically significant disparities for each technique. DeNovix exhibited the highest Spearman correlation coefficient (0.999), followed by NanoDrop (0.81), and Qubit (0.77). In summary, there is no difference between DeNovix and NanoDrop in estimated gDNA concentrations of S. pneumoniae, and the spectrophotometry methods estimated close or equal to 2 times higher concentrations compared to Qubit for pure DNA.
Suggested Citation
Nick Versmessen & Leen Van Simaey & Abel Abera Negash & Marjolein Vandekerckhove & Paco Hulpiau & Mario Vaneechoutte & Piet Cools, 2024.
"Comparison of DeNovix, NanoDrop and Qubit for DNA quantification and impurity detection of bacterial DNA extracts,"
PLOS ONE, Public Library of Science, vol. 19(6), pages 1-14, June.
Handle:
RePEc:plo:pone00:0305650
DOI: 10.1371/journal.pone.0305650
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0305650. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.