Author
Listed:
- Patrick Neale
- Shelby Brown
- Tara Sill
- Alison Cawood
- Maria Tzortziou
- Jieun Park
- Min-Sun Lee
- Beth Paquette
Abstract
Measurements by volunteer scientists using participatory science methods in combination with high resolution remote sensing can improve our ability to monitor water quality changes in highly vulnerable and economically valuable nearshore and estuarine habitats. In the Chesapeake Bay (USA), tidal tributaries are a focus of watershed and shoreline management efforts to improve water quality. The Chesapeake Water Watch program seeks to enhance the monitoring of tributaries by developing and testing methods for volunteer scientists to easily measure chlorophyll, turbidity, and colored dissolved organic matter (CDOM) to inform Bay stakeholders and improve algorithms for analogous remote sensing (RS) products. In the program, trained volunteers have measured surface turbidity using a smartphone app, HydroColor, calibrated with a photographer’s gray card. In vivo chlorophyll and CDOM fluorescence were assessed in surface samples with hand-held fluorometers (Aquafluor) located at sample processing “hubs” where volunteers drop off samples for same day processing. In validation samples, HydroColor turbidity and Aquafluor in vivo chlorophyll and CDOM fluorescence were linear estimators of standard analytical measures of turbidity, chlorophyll and CDOM, respectively, with R2 values ranging from 0.65 to 0.85. Updates implemented in a new version (v2) of HydroColor improved the precision of estimates. These methods are being used for both repeat sampling at fixed sites of interest and ad-hoc “blitzes” to synoptically sample tributaries all around the Bay in coordination with satellite overpasses. All data is accessible on a public database (serc.fieldscope.org) and can be a resource to monitor long-term trends in the tidal tributaries as well as detect and diagnose causes of events of concern such as algal blooms and storm-induced reductions in water clarity.
Suggested Citation
Patrick Neale & Shelby Brown & Tara Sill & Alison Cawood & Maria Tzortziou & Jieun Park & Min-Sun Lee & Beth Paquette, 2024.
"Participatory science methods to monitor water quality and ground truth remote sensing of the Chesapeake Bay,"
PLOS ONE, Public Library of Science, vol. 19(10), pages 1-22, October.
Handle:
RePEc:plo:pone00:0305505
DOI: 10.1371/journal.pone.0305505
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0305505. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.