Author
Listed:
- Jongjin Kim
- Jaeri Lee
- Jeongin Yun
- U Kang
Abstract
How can a smart home system control a connected device to be in a desired state? Recent developments in the Internet of Things (IoT) technology enable people to control various devices with the smart home system rather than physical contact. Furthermore, smart home systems cooperate with voice assistants such as Bixby or Alexa allowing users to control their devices through voice. In this process, a user’s query clarifies the target state of the device rather than the actions to perform. Thus, the smart home system needs to plan a sequence of actions to fulfill the user’s needs. However, it is challenging to perform action planning because it needs to handle a large-scale state transition graph of a real-world device, and the complex dependence relationships between capabilities. In this work, we propose SmartAid (Smart Home Action Planning in awareness of Dependency), an action planning method for smart home systems. To represent the state transition graph, SmartAid learns models that represent the prerequisite conditions and operations of actions. Then, SmartAid generates an action plan considering the dependencies between capabilities and actions. Extensive experiments demonstrate that SmartAid successfully represents a real-world device based on a state transition log and generates an accurate action sequence for a given query.
Suggested Citation
Jongjin Kim & Jaeri Lee & Jeongin Yun & U Kang, 2024.
"Dependency-aware action planning for smart home,"
PLOS ONE, Public Library of Science, vol. 19(6), pages 1-22, June.
Handle:
RePEc:plo:pone00:0305415
DOI: 10.1371/journal.pone.0305415
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0305415. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.