IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0305273.html
   My bibliography  Save this article

Predictive modeling of gene mutations for the survival outcomes of epithelial ovarian cancer patients

Author

Listed:
  • Mirielle C Ma
  • Ethan S Lavi
  • Gary Altwerger
  • Z Ping Lin
  • Elena S Ratner

Abstract

Epithelial ovarian cancer (EOC) has a low overall survival rate, largely due to frequent recurrence and acquiring resistance to platinum-based chemotherapy. EOC with homologous recombination (HR) deficiency has increased sensitivity to platinum-based chemotherapy because platinum-induced DNA damage cannot be repaired. Mutations in genes involved in the HR pathway are thought to be strongly correlated with favorable response to treatment. Patients with these mutations have better prognosis and an improved survival rate. On the other hand, mutations in non-HR genes in EOC are associated with increased chemoresistance and poorer prognosis. For this reason, accurate predictions in response to treatment and overall survival remain challenging. Thus, analyses of 360 EOC cases on NCI’s The Cancer Genome Atlas (TCGA) program were conducted to identify novel gene mutation signatures that were strongly correlated with overall survival. We found that a considerable portion of EOC cases exhibited multiple and overlapping mutations in a panel of 31 genes. Using logistical regression modeling on mutational profiles and patient survival data from TCGA, we determined whether specific sets of deleterious gene mutations in EOC patients had impacts on patient survival. Our results showed that six genes that were strongly correlated with an increased survival time are BRCA1, NBN, BRIP1, RAD50, PTEN, and PMS2. In addition, our analysis shows that six genes that were strongly correlated with a decreased survival time are FANCE, FOXM1, KRAS, FANCD2, TTN, and CSMD3. Furthermore, Kaplan-Meier survival analysis of 360 patients stratified by these positive and negative gene mutation signatures corroborated that our regression model outperformed the conventional HR genes-based classification and prediction of survival outcomes. Collectively, our findings suggest that EOC exhibits unique mutation signatures beyond HR gene mutations. Our approach can identify a novel panel of gene mutations that helps improve the prediction of treatment outcomes and overall survival for EOC patients.

Suggested Citation

  • Mirielle C Ma & Ethan S Lavi & Gary Altwerger & Z Ping Lin & Elena S Ratner, 2024. "Predictive modeling of gene mutations for the survival outcomes of epithelial ovarian cancer patients," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-16, July.
  • Handle: RePEc:plo:pone00:0305273
    DOI: 10.1371/journal.pone.0305273
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305273
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0305273&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0305273?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hiroshi Tauchi & Junya Kobayashi & Ken-ichi Morishima & Dik C. van Gent & Takahiro Shiraishi & Nicole S. Verkaik & Diana vanHeems & Emi Ito & Asako Nakamura & Eiichiro Sonoda & Minoru Takata & Shunich, 2002. "Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells," Nature, Nature, vol. 420(6911), pages 93-98, November.
    2. Gabriel Balmus & Domenic Pilger & Julia Coates & Mukerrem Demir & Matylda Sczaniecka-Clift & Ana C. Barros & Michael Woods & Beiyuan Fu & Fengtang Yang & Elisabeth Chen & Matthias Ostermaier & Tatjana, 2019. "ATM orchestrates the DNA-damage response to counter toxic non-homologous end-joining at broken replication forks," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daipayan Banerjee & Kurt Langberg & Salar Abbas & Eric Odermatt & Praveen Yerramothu & Martin Volaric & Matthew A. Reidenbach & Kathy J. Krentz & C. Dustin Rubinstein & David L. Brautigan & Tarek Abba, 2021. "A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling," Nature Communications, Nature, vol. 12(1), pages 1-24, December.
    2. Frederick Richards & Marta J. Llorca-Cardenosa & Jamie Langton & Sara C. Buch-Larsen & Noor F. Shamkhi & Abhishek Bharadwaj Sharma & Michael L. Nielsen & Nicholas D. Lakin, 2023. "Regulation of Rad52-dependent replication fork recovery through serine ADP-ribosylation of PolD3," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Qin Li & Jincong Zhou & Shuai Li & Weifeng Zhang & Yingxue Du & Kuan Li & Yingxiang Wang & Qianwen Sun, 2023. "DNA polymerase ε harmonizes topological states and R-loops formation to maintain genome integrity in Arabidopsis," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Junho Kim & August Yue Huang & Shelby L. Johnson & Jenny Lai & Laura Isacco & Ailsa M. Jeffries & Michael B. Miller & Michael A. Lodato & Christopher A. Walsh & Eunjung Alice Lee, 2022. "Prevalence and mechanisms of somatic deletions in single human neurons during normal aging and in DNA repair disorders," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Hanrui Zhang & Julian Kreis & Sven-Eric Schelhorn & Heike Dahmen & Thomas Grombacher & Michael Zühlsdorf & Frank T. Zenke & Yuanfang Guan, 2023. "Mapping combinatorial drug effects to DNA damage response kinase inhibitors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Diana Rubio-Contreras & Fernando Gómez-Herreros, 2023. "TDP1 suppresses chromosomal translocations and cell death induced by abortive TOP1 activity during gene transcription," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0305273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.