Author
Listed:
- Umhara Rasool Khan
- Javaid A Sheikh
- Aqib Junaid
- Shazia Ashraf
- Altaf A Balkhi
Abstract
With bio-medical wearables becoming an essential part of Internet of Medical things (IoMT) for monitoring the health of workers, patients and others in different environments, antenna play a pivotal role in such wearables. In this communication, a novel Horse shoe shaped antenna (HSPA) meant for such wearables is presented. The vitals of the workers, patients etc. are collected and sent to the IoMT platform for ensuring their safety and monitoring their physical wellbeing. In this article, regression-based Machine learning (ML) techniques are used to facilitate the design of Horse shoe shaped patch antenna to predict the frequency of operation, radiation efficiency and Specific Absorption Rate (SAR) values to accelerate its design process for on-body applications. The HSPA designed resonates at 2.45 GHz in the frequency band of 1.75–2.98 GHz with SAR of 1.89 W/kg for an input power of 16.98 dBm, peak gain of 1.91 dBi and radiation efficiency of 62.07% when mounted on the human body. 1080 samples of data comprising of three EM parameters have been generated using a conventional EM tool by varying the physical and electrical parameters of the design. A detailed comparison of the five regression-based ML algorithms is presented, and it is observed that the ML models help in efficient use of resources while designing an antenna for bio-medical applications.
Suggested Citation
Umhara Rasool Khan & Javaid A Sheikh & Aqib Junaid & Shazia Ashraf & Altaf A Balkhi, 2025.
"A machine learning driven computationally efficient horse shoe shaped antenna design for internet of medical things,"
PLOS ONE, Public Library of Science, vol. 20(2), pages 1-20, February.
Handle:
RePEc:plo:pone00:0305203
DOI: 10.1371/journal.pone.0305203
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0305203. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.