IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0304819.html
   My bibliography  Save this article

Research on multi-defects classification detection method for solar cells based on deep learning

Author

Listed:
  • Zhenwei Li
  • Shihai Zhang
  • Chongnian Qu
  • Zimiao Zhang
  • Feng Sun

Abstract

Solar cells are playing a significant role in aerospace equipment. In view of the surface defect characteristics in the manufacturing process of solar cells, the common surface defects are divided into three categories, which include difficult-detecting defects (mismatch), general defects (bubble, glass-crack and cell-crack) and easy-detecting defects (glass-upside-down). Corresponding to different types of defects, the deep learning model with different optimization methods and a classification detection method based on multi-models fusion are proposed in the paper. In the proposed model, in order to solve the mismatch problem between the default anchor boxes size of YOLOv5s model and the extreme scale of the battery mismatch defect label boxes, the K-means algorithm was adopted to re-cluster the dedicated anchor boxes for the mismatch defect label boxes. In order to improve the comprehensive detection accuracy of YOLOv5s model for the general defects, the YOLOv5s model was also improved by the methods of image preprocessing, anchor box improving and detection head replacing. In order to ensure the recognition accuracy and improve the detection speed for easy-detecting defects, the lightweight classification network MobileNetV2 was also used to classify the cells with glass-upside-down defects. The experimental results show that the proposed optimization model and classification detection method can significantly improve the defect detection precision. Respectively, the detection precision for mismatch, bubble, glass-crack and cell-crack defects are up to 95.64%, 91.8%, 93.1% and 98.0%. By using lightweight model to train the glass-upside-down defect dataset, the average classification accuracy reaches 100% and the detection speed reaches 13.29 frames per second. The comparison experiments show that the proposed model has a great improvement in detection accuracy compared with the original model, and the defect detection speed of lightweight classification network is improved more obviously, which confirms the effectiveness of the proposed optimization model and the multi-defect classification detection method for solar cells defect detection.

Suggested Citation

  • Zhenwei Li & Shihai Zhang & Chongnian Qu & Zimiao Zhang & Feng Sun, 2024. "Research on multi-defects classification detection method for solar cells based on deep learning," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-16, June.
  • Handle: RePEc:plo:pone00:0304819
    DOI: 10.1371/journal.pone.0304819
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304819
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0304819&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0304819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0304819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.