Author
Abstract
Against the backdrop of increasingly mature intelligent driving assistance systems, effective monitoring of driver alertness during long-distance driving becomes especially crucial. This study introduces a novel method for driver fatigue detection aimed at enhancing the safety and reliability of intelligent driving assistance systems. The core of this method lies in the integration of advanced facial recognition technology using deep convolutional neural networks (CNN), particularly suited for varying lighting conditions in real-world scenarios, significantly improving the robustness of fatigue detection. Innovatively, the method incorporates emotion state analysis, providing a multi-dimensional perspective for assessing driver fatigue. It adeptly identifies subtle signs of fatigue in rapidly changing lighting and other complex environmental conditions, thereby strengthening traditional facial recognition techniques. Validation on two independent experimental datasets, specifically the Yawn and YawDDR datasets, reveals that our proposed method achieves a higher detection accuracy, with an impressive 95.3% on the YawDDR dataset, compared to 90.1% without the implementation of Algorithm 2. Additionally, our analysis highlights the method’s adaptability to varying brightness levels, improving detection accuracy by up to 0.05% in optimal lighting conditions. Such results underscore the effectiveness of our advanced data preprocessing and dynamic brightness adaptation techniques in enhancing the accuracy and computational efficiency of fatigue detection systems. These achievements not only showcase the potential application of advanced facial recognition technology combined with emotional analysis in autonomous driving systems but also pave new avenues for enhancing road safety and driver welfare.
Suggested Citation
Ning Lin & Yue Zuo, 2024.
"Advancing driver fatigue detection in diverse lighting conditions for assisted driving vehicles with enhanced facial recognition technologies,"
PLOS ONE, Public Library of Science, vol. 19(7), pages 1-25, July.
Handle:
RePEc:plo:pone00:0304669
DOI: 10.1371/journal.pone.0304669
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0304669. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.