Author
Listed:
- Richard Felius
- Michiel Punt
- Marieke Geerars
- Natasja Wouda
- Rins Rutgers
- Sjoerd Bruijn
- Sina David
- Jaap van Dieën
Abstract
Background: Variational AutoEncoders (VAE) might be utilized to extract relevant information from an IMU-based gait measurement by reducing the sensor data to a low-dimensional representation. The present study explored whether VAEs can reduce IMU-based gait data of people after stroke into a few latent features with minimal reconstruction error. Additionally, we evaluated the psychometric properties of the latent features in comparison to gait speed, by assessing 1) their reliability; 2) the difference in scores between people after stroke and healthy controls; and 3) their responsiveness during rehabilitation. Methods: We collected test-retest and longitudinal two-minute walk-test data using an IMU from people after stroke in clinical rehabilitation, as well as from a healthy control group. IMU data were segmented into 5-second epochs, which were reduced to 12 latent-feature scores using a VAE. The between-day test-retest reliability of the latent features was assessed using ICC-scores. The differences between the healthy and the stroke group were examined using an independent t-test. Lastly, the responsiveness was determined as the number of individuals who significantly changed during rehabilitation. Results: In total, 15,381 epochs from 107 people after stroke and 37 healthy controls were collected. The VAE achieved data reconstruction with minimal errors. Five latent features demonstrated good-to-excellent test-retest reliability. Seven latent features were significantly different between groups. We observed changes during rehabilitation for 21 and 20 individuals in latent-feature scores and gait speed, respectively. However, the direction of the change scores of the latent features was ambiguous. Only eleven individuals exhibited changes in both latent-feature scores and gait speed. Conclusion: VAEs can be used to effectively reduce IMU-based gait assessment to a concise set of latent features. Some latent features had a high test-retest reliability and differed significantly between healthy controls and people after stroke. Further research is needed to determine their clinical applicability.
Suggested Citation
Richard Felius & Michiel Punt & Marieke Geerars & Natasja Wouda & Rins Rutgers & Sjoerd Bruijn & Sina David & Jaap van Dieën, 2024.
"Exploring unsupervised feature extraction of IMU-based gait data in stroke rehabilitation using a variational autoencoder,"
PLOS ONE, Public Library of Science, vol. 19(10), pages 1-16, October.
Handle:
RePEc:plo:pone00:0304558
DOI: 10.1371/journal.pone.0304558
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0304558. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.