Author
Listed:
- Alexander A Huang
- Samuel Y Huang
Abstract
Objective and aims: Identification of associations between the obese category of weight in the general US population will continue to advance our understanding of the condition and allow clinicians, providers, communities, families, and individuals make more informed decisions. This study aims to improve the prediction of the obese category of weight and investigate its relationships with factors, ultimately contributing to healthier lifestyle choices and timely management of obesity. Methods: Questionnaires that included demographic, dietary, exercise and health information from the US National Health and Nutrition Examination Survey (NHANES 2017–2020) were utilized with BMI 30 or higher defined as obesity. A machine learning model, XGBoost predicted the obese category of weight and Shapely Additive Explanations (SHAP) visualized the various covariates and their feature importance. Model statistics including Area under the receiver operator curve (AUROC), sensitivity, specificity, positive predictive value, negative predictive value and feature properties such as gain, cover, and frequency were measured. SHAP explanations were created for transparent and interpretable analysis. Results: There were 6,146 adults (age > 18) that were included in the study with average age 58.39 (SD = 12.94) and 3122 (51%) females. The machine learning model had an Area under the receiver operator curve of 0.8295. The top four covariates include waist circumference (gain = 0.185), GGT (gain = 0.101), platelet count (gain = 0.059), AST (gain = 0.057), weight (gain = 0.049), HDL cholesterol (gain = 0.032), and ferritin (gain = 0.034). Conclusion: In conclusion, the utilization of machine learning models proves to be highly effective in accurately predicting the obese category of weight. By considering various factors such as demographic information, laboratory results, physical examination findings, and lifestyle factors, these models successfully identify crucial risk factors associated with the obese category of weight.
Suggested Citation
Alexander A Huang & Samuel Y Huang, 2024.
"Application of a transparent artificial intelligence algorithm for US adults in the obese category of weight,"
PLOS ONE, Public Library of Science, vol. 19(5), pages 1-11, May.
Handle:
RePEc:plo:pone00:0304509
DOI: 10.1371/journal.pone.0304509
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0304509. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.