IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0304424.html
   My bibliography  Save this article

Computation of soliton structure and analysis of chaotic behaviour in quantum deformed Sinh-Gordon model

Author

Listed:
  • Adil Jhangeer
  • Farheen Ibraheem
  • Tahira Jamal
  • Muhammad Bilal Riaz
  • Atef Abdel Kader

Abstract

Soliton dynamics and nonlinear phenomena in quantum deformation has been investigated through conformal time differential generalized form of q deformed Sinh-Gordon equation. The underlying equation has recently undergone substantial amount of research. In Phase 1, we employed modified auxiliary and new direct extended algebraic methods. Trigonometric, hyperbolic, exponential and rational solutions are successfully extracted using these techniques, coupled with the best possible constraint requirements implemented on parameters to ensure the existence of solutions. The findings, then, are represented by 2D, 3D and contour plots to highlight the various solitons’ propagation patterns such as kink-bright, bright, dark, bright-dark, kink, and kink-peakon solitons and solitary wave solutions. It is worth emphasizing that kink dark, dark peakon, dark and dark bright solitons have not been found earlier in literature. In phase 2, the underlying model is examined under various chaos detecting tools for example lyapunov exponents, multistability and time series analysis and bifurcation diagram. Chaotic behavior is investigated using various initial condition and novel results are obtained.

Suggested Citation

  • Adil Jhangeer & Farheen Ibraheem & Tahira Jamal & Muhammad Bilal Riaz & Atef Abdel Kader, 2024. "Computation of soliton structure and analysis of chaotic behaviour in quantum deformed Sinh-Gordon model," PLOS ONE, Public Library of Science, vol. 19(6), pages 1-21, June.
  • Handle: RePEc:plo:pone00:0304424
    DOI: 10.1371/journal.pone.0304424
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304424
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0304424&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0304424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rafiq, Muhammad Hamza & Raza, Nauman & Jhangeer, Adil, 2023. "Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    2. Zainab, Iqra & Akram, Ghazala, 2023. "Effect of β-derivative on time fractional Jaulent–Miodek system under modified auxiliary equation method and exp(−g(Ω))-expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Mamun Miah & Faisal Alsharif & Md. Ashik Iqbal & J. R. M. Borhan & Mohammad Kanan, 2024. "Chaotic Phenomena, Sensitivity Analysis, Bifurcation Analysis, and New Abundant Solitary Wave Structures of The Two Nonlinear Dynamical Models in Industrial Optimization," Mathematics, MDPI, vol. 12(13), pages 1-22, June.
    2. Ibrahim Alraddadi & M. Akher Chowdhury & M. S. Abbas & K. El-Rashidy & J. R. M. Borhan & M. Mamun Miah & Mohammad Kanan, 2024. "Dynamical Behaviors and Abundant New Soliton Solutions of Two Nonlinear PDEs via an Efficient Expansion Method in Industrial Engineering," Mathematics, MDPI, vol. 12(13), pages 1-21, June.
    3. Rafiq, Muhammad Hamza & Raza, Nauman & Jhangeer, Adil & Zidan, Ahmed M., 2024. "Qualitative analysis, exact solutions and symmetry reduction for a generalized (2+1)-dimensional KP–MEW-Burgers equation," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Remus-Daniel Ene & Nicolina Pop, 2023. "Semi-Analytical Closed-Form Solutions for the Rikitake-Type System through the Optimal Homotopy Perturbation Method," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    5. Rafiq, Muhammad Naveed & Chen, Haibo, 2024. "Dynamics of three-wave solitons and other localized wave solutions to a new generalized (3+1)-dimensional P-type equation," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0304424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.