IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0304176.html
   My bibliography  Save this article

The intervention of curcumin on rodent models of hepatic fibrosis: A systematic review and meta-analysis

Author

Listed:
  • Yun-Hang Chu
  • Bing-Yao Pang
  • Ming Yang
  • Qi Meng
  • Yan Leng

Abstract

Objective: This study aimed to evaluate the intervention effect of curcumin on hepatic fibrosis in rodent models through systematic review and meta-analysis, in order to provide meaningful guidance for clinical practice. Methods: A systematic retrieval of relevant studies on curcumin intervention in rats or mice hepatic fibrosis models was conducted, and the data were extracted. The outcome indicators included liver cell structure and function related indicators, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), albumin (ALB), ratio of albumin to globulin (A/G), total bilirubin (TBIL), bax protein, bcl-2 protein and index of liver, as well as the relevant indicators for evaluating the degree of hepatic fibrosis, such as hyaluronic acid (HA), laminin (LN), type I collagen (Collagen I), type III collagen (Collagen III), type III procollagen (PCIII), type III procollagen amino terminal peptide (PIIINP), type IV collagen (IV-C), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), α-Smooth muscle actin (α-SMA), hydroxyproline (HYP), platelet derived factor-BB (PDGF-BB), connective tissue growth factor (CTGF) and transforming growth factor-β1 (TGF-β1), and oxidative stress-related indicators, such as superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px). These results were then analyzed by meta-analysis. Studies were evaluated for methodological quality using the syrcle’s bias risk tool. Results: A total of 59 studies were included in the meta-analysis, and the results showed that curcumin can reduce the levels of ALT, AST, ALP, TBIL, bax protein, and index of liver in hepatic fibrosis models. It can also reduce HA, LN, Collagen I, Collagen III, PCIII, PIIINP, IV-C, TNF-α, α-SMA, HYP, PDGF-BB, CTGF, TGF-β1 and MDA, and increase the levels of ALB, A/G, SOD, and GSH-Px in the hepatic fibrosis models. However, the effects of curcumin on bcl-2 protein, IL-6 in hepatic fibrosis models and index of liver in mice were not statistically significant. Conclusion: The analysis results indicate that curcumin can reduce liver cell apoptosis by maintaining the stability of liver cell membrane, inhibit the activation and proliferation of hepatic stellate cells by reducing inflammatory response, and alleviate tissue peroxidation damage by clearing oxygen free radicals.

Suggested Citation

  • Yun-Hang Chu & Bing-Yao Pang & Ming Yang & Qi Meng & Yan Leng, 2024. "The intervention of curcumin on rodent models of hepatic fibrosis: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-26, May.
  • Handle: RePEc:plo:pone00:0304176
    DOI: 10.1371/journal.pone.0304176
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304176
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0304176&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0304176?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0304176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.