Author
Listed:
- Muhammad Ayyaz Sheikh
- Maryam Bashir
- Mehtab Kiran Sudddle
Abstract
Automatic Text Summarization (ATS) is gaining popularity as there is a growing demand for a system capable of processing extensive textual content and delivering a concise, yet meaningful, relevant, and useful summary. Manual summarization is both expensive and time-consuming, making it impractical for humans to handle vast amounts of data. Consequently, the need for ATS systems has become evident. These systems encounter challenges such as ensuring comprehensive content coverage, determining the appropriate length of the summary, addressing redundancy, and maintaining coherence in the generated summary. Researchers are actively addressing these challenges by employing Natural Language Processing (NLP) techniques. While traditional methods exist for generating summaries, they often fall short of addressing multiple aspects simultaneously. To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. The performance of this enhanced algorithm is assessed by comparing it with state-of-the-art algorithms using the DUC2002 dataset. Experimental results demonstrate that the proposed algorithm significantly outperforms the compared approaches.
Suggested Citation
Muhammad Ayyaz Sheikh & Maryam Bashir & Mehtab Kiran Sudddle, 2024.
"Advancing automatic text summarization: Unleashing enhanced binary multi-objective grey wolf optimization with mutation,"
PLOS ONE, Public Library of Science, vol. 19(5), pages 1-21, May.
Handle:
RePEc:plo:pone00:0304057
DOI: 10.1371/journal.pone.0304057
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0304057. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.