Author
Listed:
- Andrew Fisher
- Xing Tan
- Muntasir Billah
- Pawan Lingras
- Jimmy Huang
- Vijay Mago
Abstract
Due to the competitive nature of the construction industry, the efficiency of requirement analysis is important in enhancing client satisfaction and a company’s reputation. For example, determining the optimal configuration of panels (generally called panelization) that form the structure of a building is one aspect of cost estimation. However, existing methods typically rely on rule-based approaches that may lead to suboptimal material usage, particularly in complex designs featuring angled walls and openings. Such inefficiency can increase costs and environmental impact due to unnecessary material waste. To address these challenges, this research proposes a Panelization Algorithm for Architectural Designs, referred to as PAAD, which utilizes a genetic evolutionary strategy built on the 2D bin packing problem. This method is designed to balance between strict adherence to manufacturing constraints and the objective of optimizing material usage. PAAD starts with multiple potential solutions within the predefined problem space, facilitating dynamic exploration of panel configurations. It approaches structural rules as flexible constraints, making necessary corrections in post-processing, and through iterative developments, the algorithm refines panel sets to minimize material use. The methodology is validated through an analysis against an industry implementation and expert-derived solutions, highlighting PAAD’s ability to surpass existing results and reduce the need for manual corrections. Additionally, to motivate future research, a synthetic data generator, the architectural drawing encodings used, and a preliminary interface are also introduced. This not only highlights the algorithm’s practical applicability but also encourages its use in real-world scenarios.
Suggested Citation
Andrew Fisher & Xing Tan & Muntasir Billah & Pawan Lingras & Jimmy Huang & Vijay Mago, 2024.
"PAAD: Panelization algorithm for architectural designs,"
PLOS ONE, Public Library of Science, vol. 19(6), pages 1-24, June.
Handle:
RePEc:plo:pone00:0303646
DOI: 10.1371/journal.pone.0303646
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0303646. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.