IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0303219.html
   My bibliography  Save this article

Cotton seed cultivar identification based on the fusion of spectral and textural features

Author

Listed:
  • Xiao Liu
  • Peng Guo
  • Quan Xu
  • Wenling Du

Abstract

The mixing of cotton seeds of different cultivars and qualities can lead to differences in growth conditions and make field management difficult. In particular, except for yield loss, it can also lead to inconsistent cotton quality and poor textile product quality, causing huge economic losses to farmers and the cotton processing industry. However, traditional cultivar identification methods for cotton seeds are time-consuming, labor-intensive, and cumbersome, which cannot meet the needs of modern agriculture and modern cotton processing industry. Therefore, there is an urgent need for a fast, accurate, and non-destructive method for identifying cotton seed cultivars. In this study, hyperspectral images (397.32 nm—1003.58 nm) of five cotton cultivars, namely Jinke 20, Jinke 21, Xinluzao 64, Xinluzao 74, and Zhongmiansuo 5, were captured using a Specim IQ camera, and then the average spectral information of seeds of each cultivar was used for spectral analysis, aiming to estab-lish a cotton seed cultivar identification model. Due to the presence of many obvious noises in the 1000 nm regions of the collected spectral data, spectra from 400 nm to 1000 nm were selected as the representative spectra of the seed samples. Then, various denoising techniques, including Savitzky-Golay (SG), Standard Normal Variate (SNV), and First Derivative (FD), were applied individually and in combination to improve the quality of the spectra. Additionally, a successive projections algorithm (SPA) was employed for spectral feature selection. Based on the full-band spectra, a Partial Least Squares-Discriminant Analysis (PLS-DA) model was established. Furthermore, spectral features and textural features were fused to create Random Forest (RF), Convolutional Neural Network (CNN), and Extreme Learning Machine (ELM) identification models. The results showed that: (1) The SNV-FD preprocessing method showed the optimal denoising performance. (2) SPA highlighted the near-infrared region (800–1000 nm), red region (620–700 nm), and blue-green region (420–570 nm) for identifying cotton cultivar. (3) The fusion of spectral features and textural features did not consistently improve the accuracy of all modeling strategies, suggesting the need for further research on appropriate modeling strategies. (4) The ELM model had the highest cotton cultivar identification accuracy, with an accuracy of 100% for the training set and 98.89% for the test set. In conclusion, this study successfully developed a highly accurate cotton seed cultivar identification model (ELM model). This study provides a new method for the rapid and non-destructive identification of cotton seed cultivars, which will help ensure the cultivar consistency of seeds used in cotton planting, and improve the overall quality and yield of cotton.

Suggested Citation

  • Xiao Liu & Peng Guo & Quan Xu & Wenling Du, 2024. "Cotton seed cultivar identification based on the fusion of spectral and textural features," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-19, May.
  • Handle: RePEc:plo:pone00:0303219
    DOI: 10.1371/journal.pone.0303219
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303219
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0303219&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0303219?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0303219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.