Author
Listed:
- Ameer Hamza
- Shengbing Ren
- Usman Saeed
Abstract
Automatic Urdu handwritten text recognition is a challenging task in the OCR industry. Unlike printed text, Urdu handwriting lacks a uniform font and structure. This lack of uniformity causes data inconsistencies and recognition issues. Different writing styles, cursive scripts, and limited data make Urdu text recognition a complicated task. Major languages, such as English, have experienced advances in automated recognition, whereas low-resource languages, such as Urdu, still lag. Transformer-based models are promising for automated recognition in high- and low-resource languages such as Urdu. This paper presents a transformer-based method called ET-Network that integrates self-attention into EfficientNet for feature extraction and a transformer for language modeling. The use of self-attention layers in EfficientNet helps to extract global and local features that capture long-range dependencies. These features proceeded into a vanilla transformer to generate text, and a prefix beam search is used for the finest outcome. NUST-UHWR, UPTI2.0, and MMU-OCR-21 are three datasets used to train and test the ET Network for a handwritten Urdu script. The ET-Network improved the character error rate by 4% and the word error rate by 1.55%, while establishing a new state-of-the-art character error rate of 5.27% and a word error rate of 19.09% for Urdu handwritten text.
Suggested Citation
Ameer Hamza & Shengbing Ren & Usman Saeed, 2024.
"ET-Network: A novel efficient transformer deep learning model for automated Urdu handwritten text recognition,"
PLOS ONE, Public Library of Science, vol. 19(5), pages 1-21, May.
Handle:
RePEc:plo:pone00:0302590
DOI: 10.1371/journal.pone.0302590
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0302590. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.