IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0302539.html
   My bibliography  Save this article

Investigating the impact of data heterogeneity on the performance of federated learning algorithm using medical imaging

Author

Listed:
  • Muhammad Babar
  • Basit Qureshi
  • Anis Koubaa

Abstract

In recent years, Federated Learning (FL) has gained traction as a privacy-centric approach in medical imaging. This study explores the challenges posed by data heterogeneity on FL algorithms, using the COVIDx CXR-3 dataset as a case study. We contrast the performance of the Federated Averaging (FedAvg) algorithm on non-identically and independently distributed (non-IID) data against identically and independently distributed (IID) data. Our findings reveal a notable performance decline with increased data heterogeneity, emphasizing the need for innovative strategies to enhance FL in diverse environments. This research contributes to the practical implementation of FL, extending beyond theoretical concepts and addressing the nuances in medical imaging applications. This research uncovers the inherent challenges in FL due to data diversity. It sets the stage for future advancements in FL strategies to effectively manage data heterogeneity, especially in sensitive fields like healthcare.

Suggested Citation

  • Muhammad Babar & Basit Qureshi & Anis Koubaa, 2024. "Investigating the impact of data heterogeneity on the performance of federated learning algorithm using medical imaging," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-33, May.
  • Handle: RePEc:plo:pone00:0302539
    DOI: 10.1371/journal.pone.0302539
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0302539
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0302539&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0302539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vishnu Kumar Kaliappan & Sundharamurthy Gnanamurthy & Abid Yahya & Ravi Samikannu & Muhammad Babar & Basit Qureshi & Anis Koubaa, 2023. "Machine Learning Based Healthcare Service Dissemination Using Social Internet of Things and Cloud Architecture in Smart Cities," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kiyotoshi Kou & Yi Dou & Ichiro Arai, 2024. "Analysis of the Forces Driving Public Hospitals’ Operating Costs Using LMDI Decomposition: The Case of Japan," Sustainability, MDPI, vol. 16(2), pages 1-15, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0302539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.