Author
Listed:
- Nicodemus Songose Awarayi
- Frimpong Twum
- James Ben Hayfron-Acquah
- Kwabena Owusu-Agyemang
Abstract
This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. Subsequently, a convolutional neural network model comprising four convolutional layers and two hidden layers was devised for classifying Alzheimer’s disease into three (3) distinct categories, namely mild cognitive impairment, Alzheimer’s disease, and normal controls. The model was trained and evaluated using a 10-fold cross-validation sampling approach with a learning rate of 0.001 and 200 training epochs at each instance. The proposed model yielded notable results, such as an accuracy of 93.45% and an area under the curve value of 0.99 when trained on the three classes. The model further showed superior results on binary classification compared with existing methods. The model recorded 94.39%, 94.92%, and 95.62% accuracies for Alzheimer’s disease versus normal controls, Alzheimer’s disease versus mild cognitive impairment, and mild cognitive impairment versus normal controls classes, respectively.
Suggested Citation
Nicodemus Songose Awarayi & Frimpong Twum & James Ben Hayfron-Acquah & Kwabena Owusu-Agyemang, 2024.
"A bilateral filtering-based image enhancement for Alzheimer disease classification using CNN,"
PLOS ONE, Public Library of Science, vol. 19(4), pages 1-15, April.
Handle:
RePEc:plo:pone00:0302358
DOI: 10.1371/journal.pone.0302358
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0302358. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.