Author
Listed:
- Baohua Huang
- Aokun Bai
- Yuqiong Wu
- Chanjuan Yang
- Han Sun
Abstract
Recognition of the key text of the Chinese seal can speed up the approval of documents, and improve the office efficiency of enterprises or government administrative departments. Due to image blurring and occlusion, the accuracy of Chinese seal recognition is low. In addition, the real dataset is very limited. In order to solve these problems, we improve the differentiable binarization detection algorithm (DBnet) to construct a model DB-ECA for text region detection, and propose a model named LSTR (Lightweight Seal Text Recognition) for text recognition. The efficient channel attention module is added to the differentiable binarization network to solve the feature pyramid conflict, and the convolutional layer network structure is improved to delay downsampling for reducing semantic feature loss. LSTR uses a lightweight CNN more suitable for small-sample generalization, and dynamically fuses positional and visual information through a self-attention-based inference layer to predict the label distribution of feature sequences in parallel. The inference layer not only solves the weak discriminative power of CNN in the shallow layer, but also facilitates CTC (Connectionist Temporal Classification) to accurately align the feature region with the target character. Experiments on the homemade dataset in this paper, DB-ECA compared with the other five commonly used detection models, the precision, recall, F-measure are the best effect of 90.29, 85.17, 87.65, respectively. LSTR compared with the other five kinds of recognition models in the last three years, to achieve the highest effect of accuracy 91.29%, and has the advantages of a small number of parameters and fast inference. The experimental results fully prove the innovation and effectiveness of our model.
Suggested Citation
Baohua Huang & Aokun Bai & Yuqiong Wu & Chanjuan Yang & Han Sun, 2024.
"DB-EAC and LSTR: DBnet based seal text detection and Lightweight Seal Text Recognition,"
PLOS ONE, Public Library of Science, vol. 19(5), pages 1-18, May.
Handle:
RePEc:plo:pone00:0301862
DOI: 10.1371/journal.pone.0301862
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301862. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.