Author
Listed:
- Pedro S Rocha
- Nuno Bento
- Duarte Folgado
- André V Carreiro
- Miguel Oliveira Santos
- Mamede de Carvalho
- Bruno Miranda
Abstract
Objectives: Cough dysfunction is a feature of patients with amyotrophic lateral sclerosis (ALS). The cough sounds carry information about the respiratory system and bulbar involvement. Our goal was to explore the association between cough sound characteristics and the respiratory and bulbar functions in ALS. Methods: This was a single-center, cross-sectional, and case-control study. On-demand coughs from ALS patients and healthy controls were collected with a smartphone. A total of 31 sound features were extracted for each cough recording using time-frequency signal processing analysis. Logistic regression was applied to test the differences between patients and controls, and in patients with bulbar and respiratory impairment. Support vector machines (SVM) were employed to estimate the accuracy of classifying between patients and controls and between patients with bulbar and respiratory impairment. Multiple linear regressions were applied to examine correlations between cough sound features and clinical variables. Results: Sixty ALS patients (28 with bulbar dysfunction, and 25 with respiratory dysfunction) and forty age- and gender-matched controls were recruited. Our results revealed clear differences between patients and controls, particularly within the frequency-related group of features (AUC 0.85, CI 0.79–0.91). Similar results were observed when comparing patients with and without bulbar dysfunction. Sound features related to intensity displayed the strongest correlation with disease severity, and were the most significant in distinguishing patients with and without respiratory dysfunction. Discussion: We found a good relationship between specific cough sound features and clinical variables related to ALS functional disability. The findings relate well with some expected impact from ALS on both respiratory and bulbar contributions to the physiology of cough. Finally, our approach could be relevant for clinical practice, and it also facilitates home-based data collection.
Suggested Citation
Pedro S Rocha & Nuno Bento & Duarte Folgado & André V Carreiro & Miguel Oliveira Santos & Mamede de Carvalho & Bruno Miranda, 2024.
"Evaluation of smartphone-based cough data in amyotrophic lateral sclerosis as a potential predictor of functional disability,"
PLOS ONE, Public Library of Science, vol. 19(12), pages 1-19, December.
Handle:
RePEc:plo:pone00:0301734
DOI: 10.1371/journal.pone.0301734
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301734. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.