Author
Listed:
- Abedalmuhdi Almomany
- Amin Jarrah
- Muhammed Sutcu
Abstract
A key benefit of the Open Computing Language (OpenCL) software framework is its capability to operate across diverse architectures. Field programmable gate arrays (FPGAs) are a high-speed computing architecture used for computation acceleration. This study investigates the impact of memory access time on overall performance in general FPGA computing environments through the creation of eight benchmarks within the OpenCL framework. The developed benchmarks capture a range of memory access behaviors, and they play a crucial role in assessing the performance of spinning and sleeping on FPGA-based architectures. The results obtained guide the formulation of new implementations and contribute to defining an abstraction of FPGAs. This abstraction is then utilized to create tailored implementations of primitives that are well-suited for this platform. While other research endeavors concentrate on creating benchmarks with the Compute Unified Device Architecture (CUDA) to scrutinize the memory systems across diverse GPU architectures and propose recommendations for future generations of GPU computation platforms, this study delves into the memory system analysis for the broader FPGA computing platform. It achieves this by employing the highly abstracted OpenCL framework, exploring various data workload characteristics, and experimentally delineating the appropriate implementation of primitives that can seamlessly integrate into a design tailored for the FPGA computing platform. Additionally, the results underscore the efficacy of employing a task-parallel model to mitigate the need for high-cost synchronization mechanisms in designs constructed on general FPGA computing platforms.
Suggested Citation
Abedalmuhdi Almomany & Amin Jarrah & Muhammed Sutcu, 2024.
"Exploring memory synchronization and performance considerations for FPGA platform using the high-abstracted OpenCL framework: Benchmarks development and analysis,"
PLOS ONE, Public Library of Science, vol. 19(5), pages 1-13, May.
Handle:
RePEc:plo:pone00:0301720
DOI: 10.1371/journal.pone.0301720
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301720. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.