Author
Listed:
- Lingnan Xia
- Sirui He
- Y-F Huang
- Hua Ma
Abstract
Atrial Fibrillation (AF), a type of heart arrhythmia, becomes more common with aging and is associated with an increased risk of stroke and mortality. In light of the urgent need for effective automated AF monitoring, existing methods often fall short in balancing accuracy and computational efficiency. To address this issue, we introduce a framework based on Multi-Scale Dilated Convolution (AF-MSDC), aimed at achieving precise predictions with low cost and high efficiency. By integrating Multi-Scale Dilated Convolution (MSDC) modules, our model is capable of extracting features from electrocardiogram (ECG) datasets across various scales, thus achieving an optimal balance between precision and computational savings. We have developed three MSDC modules to construct the AF-MSDC framework and assessed its performance on renowned datasets, including the MIT-BIH Atrial Fibrillation Database and Physionet Challenge 2017. Empirical results unequivocally demonstrate that our technique surpasses existing state-of-the-art (SOTA) methods in the AF detection domain. Specifically, our model, with only a quarter of the parameters of a Residual Network (ResNet), achieved an impressive sensitivity of 99.45%, specificity of 99.64% (on the MIT-BIH AFDB dataset), and an F 1 a l l score of 85.63% (on the Physionet Challenge 2017 AFDB dataset). This high efficiency makes our model particularly suitable for integration into wearable ECG devices powered by edge computing frameworks. Moreover, this innovative approach offers new possibilities for the early diagnosis of AF in clinical applications, potentially improving patient quality of life and reducing healthcare costs.
Suggested Citation
Lingnan Xia & Sirui He & Y-F Huang & Hua Ma, 2024.
"Multiscale dilated convolutional neural network for Atrial Fibrillation detection,"
PLOS ONE, Public Library of Science, vol. 19(6), pages 1-17, June.
Handle:
RePEc:plo:pone00:0301691
DOI: 10.1371/journal.pone.0301691
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301691. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.