Author
Listed:
- László Bántay
- János Abonyi
Abstract
Frequent sequence pattern mining is an excellent tool to discover patterns in event chains. In complex systems, events from parallel processes are present, often without proper labelling. To identify the groups of events related to the subprocess, frequent sequential pattern mining can be applied. Since most algorithms provide too many frequent sequences that make it difficult to interpret the results, it is necessary to post-process the resulting frequent patterns. The available visualisation techniques do not allow easy access to multiple properties that support a faster and better understanding of the event scenarios. To answer this issue, our work proposes an intuitive and interactive solution to support this task, introducing three novel network-based sequence visualisation methods that can reduce the time of information processing from a cognitive perspective. The proposed visualisation methods offer a more information rich and easily understandable interpretation of sequential pattern mining results compared to the usual text-like outcome of pattern mining algorithms. The first uses the confidence values of the transitions to create a weighted network, while the second enriches the adjacency matrix based on the confidence values with similarities of the transitive nodes. The enriched matrix enables a similarity-based Multidimensional Scaling (MDS) projection of the sequences. The third method uses similarity measurement based on the overlap of the occurrences of the supporting events of the sequences. The applicability of the method is presented in an industrial alarm management problem and in the analysis of clickstreams of a website. The method was fully implemented in Python environment. The results show that the proposed methods are highly applicable for the interactive processing of frequent sequences, supporting the exploration of the inner mechanisms of complex systems.
Suggested Citation
László Bántay & János Abonyi, 2024.
"Network-based visualisation of frequent sequences,"
PLOS ONE, Public Library of Science, vol. 19(5), pages 1-18, May.
Handle:
RePEc:plo:pone00:0301262
DOI: 10.1371/journal.pone.0301262
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301262. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.