IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0301167.html
   My bibliography  Save this article

Evaluating machine learning algorithms to predict lameness in dairy cattle

Author

Listed:
  • Rajesh Neupane
  • Ashrant Aryal
  • Angelika Haeussermann
  • Eberhard Hartung
  • Pablo Pinedo
  • Sushil Paudyal

Abstract

Dairy cattle lameness represents one of the common concerns in intensive and commercial dairy farms. Lameness is characterized by gait-related behavioral changes in cows and multiple approaches are being utilized to associate these changes with lameness conditions including data from accelerometers, and other precision technologies. The objective was to evaluate the use of machine learning algorithms for the identification of lameness conditions in dairy cattle. In this study, 310 multiparous Holstein dairy cows from a herd in Northern Colorado were affixed with a leg-based accelerometer (Icerobotics® Inc, Edinburg, Scotland) to obtain the lying time (min/d), daily steps count (n/d), and daily change (n/d). Subsequently, study cows were monitored for 4 months and cows submitted for claw trimming (CT) were differentiated as receiving corrective claw trimming (CCT) or as being diagnosed with a lameness disorder and consequent therapeutic claw trimming (TCT) by a certified hoof trimmer. Cows not submitted to CT were considered healthy controls. A median filter was applied to smoothen the data by reducing inherent variability. Three different machine learning (ML) models were defined to fit each algorithm which included the conventional features (containing daily lying, daily steps, and daily change derived from the accelerometer), slope features (containing features extracted from each variable in Conventional feature), or all features (3 simple features and 3 slope features). Random forest (RF), Naive Bayes (NB), Logistic Regression (LR), and Time series (ROCKET) were used as ML predictive approaches. For the classification of cows requiring CCT and TCT, ROCKET classifier performed better with accuracy (> 90%), ROC-AUC (> 74%), and F1 score (> 0.61) as compared to other algorithms. Slope features derived in this study increased the efficiency of algorithms as the better-performing models included All features explored. However, further classification of diseases into infectious and non-infectious events was not effective because none of the algorithms presented satisfactory model accuracy parameters. For the classification of observed cow locomotion scores into severely lame and moderately lame conditions, the ROCKET classifier demonstrated satisfactory accuracy (> 0.85), ROC-AUC (> 0.68), and F1 scores (> 0.44). We conclude that ML models using accelerometer data are helpful in the identification of lameness in cows but need further research to increase the granularity and accuracy of classification.

Suggested Citation

  • Rajesh Neupane & Ashrant Aryal & Angelika Haeussermann & Eberhard Hartung & Pablo Pinedo & Sushil Paudyal, 2024. "Evaluating machine learning algorithms to predict lameness in dairy cattle," PLOS ONE, Public Library of Science, vol. 19(7), pages 1-17, July.
  • Handle: RePEc:plo:pone00:0301167
    DOI: 10.1371/journal.pone.0301167
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0301167
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0301167&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0301167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0301167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.